By Topic

Data mining with an ant colony optimization algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Parpinelli, R.S. ; Coordenacao de Pos-Graduacao em Engenharia Eletrica e Informatica Ind., Centro Fed. de Educacao Tecnologica do Parana, Curitiba, Brazil ; Lopes, H.S. ; Freitas, A.A.

The paper proposes an algorithm for data mining called Ant-Miner (ant-colony-based data miner). The goal of Ant-Miner is to extract classification rules from data. The algorithm is inspired by both research on the behavior of real ant colonies and some data mining concepts as well as principles. We compare the performance of Ant-Miner with CN2, a well-known data mining algorithm for classification, in six public domain data sets. The results provide evidence that: 1) Ant-Miner is competitive with CN2 with respect to predictive accuracy, and 2) the rule lists discovered by Ant-Miner are considerably simpler (smaller) than those discovered by CN2

Published in:

Evolutionary Computation, IEEE Transactions on  (Volume:6 ,  Issue: 4 )