We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Universal linear least squares prediction: upper and lower bounds

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Singer, A.C. ; Dept. of Electr. & Comput. Eng., Illinois Univ., Urbana, IL, USA ; Kozat, S.S. ; Feder, M.

We consider the problem of sequential linear prediction of real-valued sequences under the square-error loss function. For this problem, a prediction algorithm has been demonstrated whose accumulated squared prediction error, for every bounded sequence, is asymptotically as small as the best fixed linear predictor for that sequence, taken from the class of all linear predictors of a given order p. The redundancy, or excess prediction error above that of the best predictor for that sequence, is upper-bounded by A2P ln(n)/n, where n is the data length and the sequence is assumed to be bounded by some A. We provide an alternative proof of this result by connecting it with universal probability assignment. We then show that this predictor is optimal in a min-max sense, by deriving a corresponding lower bound, such that no sequential predictor can ever do better than a redundancy of A2p ln(n)/n.

Published in:

Information Theory, IEEE Transactions on  (Volume:48 ,  Issue: 8 )