By Topic

Reliability assessment of microvias in HDI printed circuit boards

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Fuhan Liu ; Packaging Res. Center, Georgia Inst. of Technol., Atlanta, GA, USA ; Jicun Lu ; V. Sundaram ; D. Sutter
more authors

Accelerating adoption of CSP and flip-chip area array packaging for high performance and hand-held applications is the main driving force for high-density substrates and printed circuit boards. At the Packaging Research Center, Georgia Institute of Technology (PRC-GT), ultra-fine line high density interconnect (HDI) substrate technology is being developed as part of the system-on-a-package (SOP) research and testbed efforts to meet these emerging requirements. To be adopted by industry, this novel technology must demonstrate the critical elements of high reliability and low cost processing. The HDI and microvias structures discussed in this paper were fabricated on high Tg organic substrates using a sequential build-up process, and were subject to extensive liquid to liquid thermal shock testing. All 75 μm microvias and above successfully passed 2000 cycles without failure, and first failure occurred at 1000 cycles for 50 μm microvias on a 50 μm thick dielectric layer. Microvia down to 25 μm diameter on a 25 μm thick dielectric layer have passed 2000 cycles with zero failures. Cross-sectioning confirmed that failures were caused by process related defects, such as thin electrolytic copper plating. This paper will discuss the reliability results of the PRC HDI microvias process and methods to improve the mechanical reliability of small photo defined microvias fabricated on similar laminate substrates

Published in:

IEEE Transactions on Components and Packaging Technologies  (Volume:25 ,  Issue: 2 )