Scheduled System Maintenance:
On May 6th, system maintenance will take place from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). During this time, there may be intermittent impact on performance. We apologize for the inconvenience.
By Topic

Effect of process parameters on the surface morphology and mechanical performance of silicon structures after deep reactive ion etching (DRIE)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
4 Author(s)
Kuo-Shen Chen ; Dept. of Mech. Eng., Cheng Kung Univ., Tainan, Taiwan ; Ayon, A.A. ; Zhang, Xin ; Spearing, S.M.

The ability to predict and control the influence of process parameters during silicon etching is vital for the success of most MEMS devices. In the case of deep reactive ion etching (DRIE) of silicon substrates, experimental results indicate that etch performance as well as surface morphology and post-etch mechanical behavior have a strong dependence on processing parameters. In order to understand the influence of these parameters, a set of experiments was designed and performed to fully characterize the sensitivity of surface morphology and mechanical behavior of silicon samples produced with different DRIE operating conditions. The designed experiment involved a matrix of 55 silicon wafers with radius hub flexure (RHF) specimens which were etched 10 min under varying DRIE processing conditions. Data collected by interferometry, atomic force microscopy (AFM), profilometry, and scanning electron microscopy (SEM), was used to determine the response of etching performance to operating conditions. The data collected for fracture strength was analyzed and modeled by finite element computation. The data was then fitted to response surfaces to model the dependence of response variables on dry processing conditions

Published in:

Microelectromechanical Systems, Journal of  (Volume:11 ,  Issue: 3 )