By Topic

Effective imaging of buried dielectric objects

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Morrow, I.L. ; Cranfield Univ., R. Mil. Coll. of Sci., Shrivenham, UK ; van Genderen, P.

Ultrawide-band CW radar have shown good potential for remote imaging of surface laid or shallow buried landmine-like objects. However when sensing fields near to the ground, a number of factors including direct antenna coupling, air/ground coupling, receiver noise floor, and effective dynamic range conspire to degrade or mask the scattered return, resulting in a loss of signal magnitude, range accuracy, and range resolution. The present paper addresses the latter problems using a near-field detection methodology and providing a thorough experimental and systems analysis of the signal-to-clutter issues. The method proves advantageous in sensing weak echoes in the vicinity of the sensor from objects of low dielectric contrast with their environment. To enhance image processing gains, an effective space frequency synthetic aperture technique applicable to the two-media problem is outlined. The algorithm is straightforward and robust enough to be implemented on compact GPR systems operating in real time. The remaining problem of object identification will not be addressed here. To demonstrate the utility of these combined techniques, field experiments, over different frequency bands, were conducted and their results are reported

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:40 ,  Issue: 4 )