Cart (Loading....) | Create Account
Close category search window
 

Microwave emission of rough ocean surfaces with full spatial spectrum based on the multilevel expansion method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Li, S.-Q. ; Dept. of Electron. Eng., City Univ. of Hong Kong, China ; Chi Hou Chan ; Leung Tsang ; Lin Zhou

Microwave emission of ocean surfaces with full spatial spectrum is studied in this paper. For ocean surfaces with full spectrum, the rms height of roughness can be many wavelengths, and the surface size must be chosen to be larger than the longest scale wave in the spectrum. Due to computer resources, it is not straightforward to conduct numerical simulations of emission from rough surfaces with large rms height and size since a large number of unknowns will be involved. In this paper, the multilevel expansion of the sparse matrix canonical grid (SMCG) method, which is available for surfaces with large rms heights, is used to study the emission of one-dimensional (1-D) ocean surfaces. The computational complexity and the memory requirement are still on the order of O(N log (N)) and O (N), respectively, as in the SMCG method. Ocean surfaces with size 1024 wavelengths (21.9 m at 14 GHz) and spatial spectrum bandwidth between 0.858 rads/m (corresponding to the longest scale of 341.3 wavelengths) and 4691.5 rads/m (corresponding to the shortest scale of 1/16 wavelengths), which is rather wide to be regarded as a full spectrum, are studied. The maximum of the electromagnetic wavenumber-surface rms height product is up to 25.18. The surface is modeled as a lossy dielectric surface with large relative permittivity rather than as a perfectly conducting surface, which is often adopted as an approximation in the active remote sensing of ocean surfaces. A relatively high sampling density is used to ensure accuracy. The effects of the low and high portions of the spectrum on the emissivity are studied numerically. Monte Carlo simulation for ocean surfaces is also performed by exploiting the efficiency of the multilevel expansion method and the use of parallel computing techniques. The convergence of the results with respect to the sampling density is also illustrated

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:40 ,  Issue: 3 )

Date of Publication:

Mar 2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.