By Topic

Paracatadioptric camera calibration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Geyer, C. ; GRASP Lab., Pennsylvania Univ., Philadelphia, PA, USA ; Daniilidis, K.

Catadioptric sensors refer to the combination of lens-based devices and reflective surfaces. These systems are useful because they may have a field of view which is greater than hemispherical, providing the ability to simultaneously view in any direction. Configurations which have a unique effective viewpoint are of primary interest, among these is the case where the reflective surface is a parabolic mirror and the camera is such that it induces an orthographic projection and which we call paracatadioptric. We present an algorithm for the calibration of such a device using only the images of lines in space. In fact, we show that we may obtain all of the intrinsic parameters from the images of only three lines and that this is possible without any metric information. We propose a closed-form solution for focal length, image center, and aspect ratio for skewless cameras and a polynomial root solution in the presence of skew. We also give a method for determining the orientation of a plane containing two sets of parallel lines from one uncalibrated view. Such an orientation recovery enables a rectification which is impossible to achieve in the case of a single uncalibrated view taken by a conventional camera. We study the performance of the algorithm in simulated setups and compare results on real images with an approach based on the image of the mirror's bounding circle

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:24 ,  Issue: 5 )