By Topic

Face recognition with radial basis function (RBF) neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Meng Joo Er ; Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore, Singapore ; Shiqian Wu ; Juwei Lu ; Hock Lye Toh

A general and efficient design approach using a radial basis function (RBF) neural classifier to cope with small training sets of high dimension, which is a problem frequently encountered in face recognition, is presented. In order to avoid overfitting and reduce the computational burden, face features are first extracted by the principal component analysis (PCA) method. Then, the resulting features are further processed by the Fisher's linear discriminant (FLD) technique to acquire lower-dimensional discriminant patterns. A novel paradigm is proposed whereby data information is encapsulated in determining the structure and initial parameters of the RBF neural classifier before learning takes place. A hybrid learning algorithm is used to train the RBF neural networks so that the dimension of the search space is drastically reduced in the gradient paradigm. Simulation results conducted on the ORL database show that the system achieves excellent performance both in terms of error rates of classification and learning efficiency

Published in:

IEEE Transactions on Neural Networks  (Volume:13 ,  Issue: 3 )