By Topic

Communication channel equalization using complex-valued minimal radial basis function neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Deng Jianping ; Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore, Singapore ; Sundararajan, N. ; Saratchandran, P.

A complex radial basis function neural network is proposed for equalization of quadrature amplitude modulation (QAM) signals in communication channels. The network utilizes a sequential learning algorithm referred to as complex minimal resource allocation network (CMRAN) and is an extension of the MRAN algorithm originally developed for online learning in real-valued radial basis function (RBF) networks. CMRAN has the ability to grow and prune the (complex) RBF network's hidden neurons to ensure a parsimonious network structure. The performance of the CMRAN equalizer for nonlinear channel equalization problems has been evaluated by comparing it with the functional link artificial neural network (FLANN) equalizer of J.C. Patra et al. (1999) and the Gaussian stochastic gradient (SG) RBF equalizer of I. Cha and S. Kassam (1995). The results clearly show that CMRANs performance is superior in terms of symbol error rates and network complexity

Published in:

Neural Networks, IEEE Transactions on  (Volume:13 ,  Issue: 3 )