Scheduled Maintenance on Saturday, October 24, 2015
IEEE Xplore will be unavailable from 9:00 AM - 12:00 noon ET (13:00 - 16:00 UTC).
Single article sales and account management will be unavailable from 5:00 AM - 7:00 PM ET (09:00 - 23:00 UTC). We apologize for the inconvenience.
By Topic

A Definitional Framework for Functional Encryption

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Matt, C. ; Dept. of Comput. Sci., ETH Zurich, Zurich, Switzerland ; Maurer, U.

Functional encryption (FE) is a powerful generalization of various types of encryption. We investigate how FE can be used by a trusted authority to enforce access-control policies to data stored in an untrusted repository. Intuitively, if (functionally) encrypted data items are put in a publicly-readable repository, the effect of the encryption should be that every user has access to exactly (and only) those functions of the data items for which he has previously received the corresponding decryption key. That is, in an ideal-world view, the key authority can flexibly manage read access of users to the repository. This appears to be exactly what FE is supposed to achieve, and most natural applications of FE can be understood as specific uses of such a repository with access control. However, quite surprisingly, it is unclear whether known security definitions actually achieve this goal and hence whether known FE schemes can be used in such an application. In fact, there seems to be agreement in the cryptographic community that identifying the right security definitions for FE remains open. To resolve this problem, we treat FE in the constructive cryptography framework and propose a new conventional security definition, called composable functional encryption security (CFE-security), which exactly matches the described ideal-world interpretation. This definition (and hence the described application) is shown to be unachievable in the standard model but achievable in the random oracle model. Moreover, somewhat weaker definitions, which are achievable in the standard model, can be obtained by certain operational restrictions of the ideal-world repository, making explicit how schemes satisfying such a definition can (and cannot) meaningfully be used. Finally, adequate security definitions for generalizations of FE (such as multi-input, randomized functions, malicious cipher text generation, etc.) can be obtained by straight-forward operational extensions of the reposit- ry and extracting the corresponding security definitions. This leads towards a unified treatment of the security of FE.

Published in:

Computer Security Foundations Symposium (CSF), 2015 IEEE 28th

Date of Conference:

13-17 July 2015