Scheduled Maintenance on Saturday, October 24, 2015
IEEE Xplore will be unavailable from 9:00 AM - 12:00 noon ET (13:00 - 16:00 UTC).
Single article sales and account management will be unavailable from 5:00 AM - 7:00 PM ET (09:00 - 23:00 UTC). We apologize for the inconvenience.
By Topic

Differential Fault Intensity Analysis

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ghalaty, N.F. ; Bradley Dept. of Electr. & Comput. Eng., Virginia Tech, Blacksburg, VA, USA ; Yuce, B. ; Taha, M. ; Schaumont, P.

Recent research has demonstrated that there is no sharp distinction between passive attacks based on side-channel leakage and active attacks based on fault injection. Fault behavior can be processed as side-channel information, offering all the benefits of Differential Power Analysis including noise averaging and hypothesis testing by correlation. This paper introduces Differential Fault Intensity Analysis, which combines the principles of Differential Power Analysis and fault injection. We observe that most faults are biased - such as single-bit, two-bit, or three-bit errors in a byte - and that this property can reveal the secret key through a hypothesis test. Unlike Differential Fault Analysis, we do not require precise analysis of the fault propagation. Unlike Fault Sensitivity Analysis, we do not require a fault sensitivity profile for the device under attack. We demonstrate our method on an FPGA implementation of AES with a fault injection model. We find that with an average of 7 fault injections, we can reconstruct a full 128-bit AES key.

Published in:

Fault Diagnosis and Tolerance in Cryptography (FDTC), 2014 Workshop on

Date of Conference:

23-23 Sept. 2014