Scheduled Maintenance on Saturday, October 24, 2015
IEEE Xplore will be unavailable from 9:00 AM - 12:00 noon ET (13:00 - 16:00 UTC).
Single article sales and account management will be unavailable from 5:00 AM - 7:00 PM ET (09:00 - 23:00 UTC). We apologize for the inconvenience.
By Topic

Precise fault-injections using voltage and temperature manipulation for differential cryptanalysis

Sign In

Full text access may be available.

To access full text, please use your member or institutional sign in.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kumar, R. ; Univ. of Massachusetts, Amherst, MA, USA ; Jovanovic, P. ; Polian, I.

State-of-the-art fault-based cryptanalysis methods are capable of breaking most recent ciphers after only a few fault injections. However, they require temporal and spatial accuracies of fault injection that were believed to rule out low-cost injection techniques such as voltage, frequency or temperature manipulation. We investigate selection of supply-voltage and temperature values that are suitable for high-precision fault injection even up to a single bit. The object of our studies is an ASIC implementation of the recently presented block cipher PRINCE, for which a two-stage fault attack scheme has been suggested lately. This attack requires, on average, about four to five fault injections in well-defined locations. We show by electrical simulations that voltage-temperature points exist for which faults show up at locations required for a successful attack with a likelihood of around 0.1%. This implies that the complete attack can be mounted by approximately 4,000 to 5,000 fault injection attempts, which is clearly feasible.

Published in:

On-Line Testing Symposium (IOLTS), 2014 IEEE 20th International

Date of Conference:

7-9 July 2014