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ABSTRACT To further liberalize the retail electricity market, this paper establishes a novel active dis-
tribution system market (ADSM) to encourage the new entries of micro virtual power plants (µVPPs) as
prosumers. µVPPs compete with traditional retailers by submitting price–quantity bids/offers for energy
and reserve resources. The joint operation of energy and reserve market is modeled as a bilevel equilibrium
problemwith equilibrium constraints (EPEC) with an upper-level objective that maximizes allµVPPs’ profit
and a lower level objective that maximizes social welfare of the market clearing process. A coevolutionary
approach is successfully employed to determine the pure strategy Nash equilibrium of the EPEC model.
The case studies demonstrate the effectiveness of the coevolutionary method and show that µVPPs’
bidding/offering strategies depend significantly on the penetration level of distributed energy resources
and renewable energy sources and they can be considerably influenced by rivals’ strategies. This paper
then compares µVPPs’ performances under different market structures and addresses the advantages of the
proposed ADSM in terms of higher asset utilization rate, higher economic profit, and more secured return
on investment.

INDEX TERMS Micro virtual power plant (µVPP), active distribution system market (ADSM), distribution
system operator (DSO), bilevel EPEC, coevolutionary computation.

I. INTRODUCTION
It has been more than ten years since the UK electricity retail
market was liberalized, evident barriers to entry still remain
for small suppliers. It is hard for small suppliers to secure
contracts of small quantity to match their load profile, for the
long duration they are seeking and at a price that is competi-
tive with the large vertically integrated suppliers [1]. Another
prominent barrier is the expectation of low or even nega-
tive margins for small scale retail-only business. In contrast,
the six large suppliers continue to dominate the electricity
retail segments with a combined market shares of 85% [2].
However, their consumers have not experienced significant
price reductions while the consumption level continues to
rise from 2012 to 2016, resulting in expensive electricity
bills [2]. In recent years, there is a growing trend to introduce
Microgrids (MGs) and Virtual Power Plants (VPPs) as new
entries into the electricity retail market and overcome the
barriers mentioned above. MGs and VPPs’ access to supply
is guaranteed by local distributed generation, their do not
share the same level of reliance on wholesale market as
their vertically integrated supplier counterparts. This should

reduce losses in the transmission of wholesale electricity and
potentially justify a reduction in the network charges that end-
consumers pay [3]. Accordingly, the participation ofMGs and
VPPs will require a updated market framework in the retail
segments and a more decentralized management.

Considering the small-scale generation capacity and the
residential level demand, the concept of micro Virtual Power
Plant (µVPP) is proposed here to include MGs and VPPs
that are connected to the restructured distribution system.
µVPP is defined as an extension to the MG concept since
the distributed energy resources (DER) located within the
µVPP has a capacity that can cover either part of the load or
generate excess electricity to be consumed by other µVPPs.
To optimally exploit µVPPs’ potentials, the concept of active
distribution system has been brought forward by [4]–[6].
In [4], the framework of active distribution system was pro-
posed to minimize the import of energy from the main grid.
Reference [5] pointed out that the DER should not only
contribute to the local energy balancing but also to the ancil-
lary services. In addition, [6] addressed the urgent need to
design a new market mechanism for the emerging active
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distribution system. This paper proposes a novel active dis-
tribution system market (ADSM) that mimics the wholesale
auction market under clearing pricing rule. µVPPs and tra-
ditional retailers as market participants tender supply and
demand bid curves in the format of quantity and price bids.
Then Distribution System Operators (DSOs) construct aggre-
gated hourly supply and demand curves to determine mar-
ket clearing prices as well as the corresponding supply and
demand schedules [7]. The benefits of implementing such
an auction market in active distribution system are shared
by all market participants: for µVPP owners, the electricity
generated from their DER assets now has the same market
value as the electricity purchased from wholesale market [8].
µVPP owners are expected to receive a higher return on
investment than the current low feed-in tariff [9]. For DSOs,
the growing entries of µVPPs reduce the system operators’
exposure to the risk associated with the unpredictability
of spot market prices and volatility in consumption pat-
terns [10]. Finally for end-consumers, they pay at cheaper
electricity retail rates due to the increased competition in the
restructured retail market.

Finding the equilibrium of the active distribution system
market described above is crucial. DSOs use the equilib-
rium model to monitor and assess the market while the
participants use the model to make strategic decisions on
their bids and offers. Using a bilevel optimization formu-
lation, the competition in electricity wholesale market was
modeled as an equilibrium problem with equilibrium con-
straints (EPEC) [11]–[17]. EPEC arises when analyzing
multi-leader-follower games where multiple firms compete
non-cooperatively in an oligopolistic market. EPEC formu-
lation captures the relationship between generation com-
panies and system operators as a hierarchical relationship
between two autonomous, and possibly conflictual, decision
makers [18]. This description is also fitting for the pro-
posed distribution system market: DSOs expect minimized
cost for clearing the market, however, an optimal market
clearing results should bring profits to µVPPs – otherwise
the µVPP owners are deterred from entering the market
and the µVPPs become isolated MGs. Once the DSOs have
cleared the market, µVPPs react to the clearing price and
quantities and refine their bidding/offering strategies such
that their profits are maximized. In [11]–[13], the bilevel
EPECs were reformulated as a single-level optimization
problem by using Karush-Kuhn-Tucker (KKT) conditions
and dual theory. Reference [11] presented a decision-making
model for distribution companies with DERs in a compet-
itive wholesale market, in which the distribution compa-
nies submitted quantity bids/offers sourced from their DERs.
Reference [12] applied a more practical market setting by
including the price variables in the offers. In [13], the bilevel
model was implemented in active distribution system mar-
ket and the economic benefits of DER aggregators were
addressed, however, those aggregators were still prohib-
ited to participate in the price-making process hence the
market power of their DER generation was not analyzed.

There are two inherent disadvantageswhen applying theKKT
conditions and dual theory in realistic electricity market:
firstly this method is based on the optimistic assumption of
a convex lower-level problem. Under this assumption, the
‘‘follower’’ (i.e. DER aggregators) altruistically submits an
optimal bid/offer that also benefits the ‘‘leader’’ (system
operators) [19]. In reality the leader can’t influence the fol-
lowers’ decision in a non-cooperative market environment
and the followers should determine bids/offers based on their
own economic benefits. Secondly the reformation towards
a single-level problem brings many Lagrange multipliers
which make the procedure difficult for practical markets
with detailed constraints [20]. In [14], an alternative method
of primal-dual approach was proposed to solve the bilevel
market equilibriummodel under the same optimistic assump-
tion of convex formulation. Binary expansion approach was
implemented in [15] and [16] to transform nonconvex prob-
lem into mixed-integer linear problem with acceptable loss
of accuracy. An iterative approximation algorithm was used
in [17] as another alternative method but the results were not
guaranteed to be Nash Equilibrium (NE).

Coevolutionary computation is a relatively new form of
agent-based simulation approach developed from classical
evolution algorithms, which adopts the notion of ecosystem
where multiple species coevolve towards mutual benefit [21].
Consequently, it is very suitable for bilevel optimization prob-
lem which has a hierarchical structure between two decision-
making groups. Coevolutionary computation solves the two
levels sequentially, improves solutions on each level sepa-
rately, while periodically exchanging information to get a
good overall solution on both levels [22]. Coevolutionary
computation was successfully applied in modelling bilevel
wholesale market with Cournot and Supply Function Equilib-
rium (SFE) formulation [23]–[25]. Reference [23] addressed
the advantages of coevolutionary computation as a parallel
and global search algorithm. However, [24] and [25] pointed
out that the coevolutionary Cournot/SFE approachmay not be
effective if market players have heterogeneous cost functions,
which was exactly the case in active distribution system
market where µVPPs have a mix of different DERs.

This paper presents a novel ADSM framework that facil-
itates the trading among µVPPs in energy and reserve retail
markets. The market equilibrium problem is formulated as a
bilevel EPEC where the upper-level problem aims at maxi-
mizing each µVPP’s profit and the lower-level problem max-
imizes the social welfare in market clearing stage. A novel
coevolutionary approach is proposed in this paper to find pure
strategy Nash Equilibrium (NE) of the ADSM operation. The
main contributions of this paper are identified as follows:

1. An active distribution system market framework is
established to better utilize the emerging µVPPs. The
potentials of their DERs are optimally exploited to
contribute to energy-reserve equilibrium at retail level.

2. The joint operation of energy and reserve markets is
formulated as a bilevel EPEC by combining the opti-
mality conditions of all upper-level problems. It also
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addresses the dual role of µVPP as either ‘‘producer’’
or ‘‘consumer’’ and the heterogeneous DER assets
located inside µVPP.

3. To the best of the authors’ knowledge, it is the first
paper to utilize coevolutionary approach to derive pure
strategy NE in an active distribution system market.
Compared with conventional methods, the proposed
coevolutionary approach demonstrates its effectiveness
when handling nonlinear market model and renders
pure strategy NE without loss of accuracy.

4. Case studies are carried out in which µVPPs are oper-
ated as pure MG, price-takers in passive distribution
system market and price-makers in active distribution
system market. The comparative study shows the eco-
nomic rationale of the proposed market framework
and analyzes the factors that could affect the bid-
ding/offering strategies of µVPPs.

This paper is organized into five sections. Section II
describes the active distribution system market framework
and its bilevel EPEC formulation. The coevolutionary com-
putation approach is presented and applied to find pure strat-
egy NE in Section III. The numerical results are displayed
and analyzed in Section IV. Section V draws the conclusion.

FIGURE 1. Three types of distribution system markets.

II. BILEVEL EPEC FORMULATION OF ACTIVE
DISTRIBUTION SYSTEM MARKET
A. THREE MARKET FRAMEWORKS IN
DISTRIBUTION SYSTEM
Fig. 1 illustrates the proposed active distribution system mar-
ket (ADSM) structure. To highlight its novelties, the frame-
works of the current distribution system market (DSM) and a
passive distribution systemmarket (PDSM) are also included.
The participants in three types of distribution markets include
µVPPs and traditional retailers and the markets are managed
by DSOs. The differences betweenmarket types lie in the role
of µVPPs, type of the bids/ Table 1 shows.

1) CURRENT DSM
The section ‘‘I. Current DSM’’ in Fig. 1 illustrates the power
flow and the information flow between market participants
and DSOs in the current electricity retail market. For an

TABLE 1. The differences between three types of distribution system
markets.

individualµVPP, theDERs generate electricity only to satisfy
its own demand during the periods when the operation cost is
lower than retail energy price. Otherwise the µVPP submits
the quantity PEi,t (kW) it intends to buy from retailers at the
retail energy price λREt (£/kWh). The DSOs then sum up
the demand from µVPPs and request the total amount of
PREt (kW) from the retailers. There are times when renewable
energy sources (RES) generate more than the demand needs,
µVPP will export the excess power back to grid at feed-in
tariff λFITt (£/kWh). As for reserve capacities required in the
distribution system, the upward reserve demand PRRUt (kW)
and downward reserve demand PRRDt (kW) are completely
supplied by retailers at retail reserve price λRRt (£/kWh). To
sum up, the current distribution system market is dominated
by retailers. The capacities of DERs are restricted to be con-
sumed insideµVPPs, thus the function ofµVPPs is degraded
into MGs and the role of µVPPs is limited as pure consumers
despite their insignificant renewable export.

2) PDSM
The section ‘‘II. PDSM’’ in Fig. 1 depicts the transaction
of power and information between market participants and
DSOs in a PDSM. In a PDSM, the transactions of power
in energy market and reserve market are priced at retail
price λREt and λRRt respectively. Based on the price signals,
µVPPs submit two sets of hourly quantity bids/offers: the
energy bid or offer PEi,t (kW) to purchase or sell energy
and the upward/downward reserve offer PRRUt /PRRDt (kW) to
provide regulating service. Then DSOs clear the energy and
reserve markets for each hour by matching the quantity in
supply offers to the quantity in demand bids. The dual role of
both producer and consumer defines µVPPs as prosumers.
As price-takers, µVPPs and traditional retailers provide a
homogeneous product at the same price which leads the
market towards perfect competition. However, the volatility
and small-scale capacities of DERs’ generation make µVPPs
an imperfect substitution for traditional retailers therefore the
PDSM can be described as ‘‘close-to-perfect’’.

3) ADSM
The proposed ADSM is shown in section ‘‘III. ADSM’’ in
Fig. 1. µVPPs participate in the ADSM as price-making
prosumers by submitting two sets of hourly price-quantity
bids/offers: the energy bid or offer PEi,t (kW) at price λEi,t
(£/kWh) to purchase or sell energy; the upward/downward
reserve offerPRUi,t /P

RD
i,t (kW) at price λRi,t (£/kWh). Traditional

retailers, on the other hand, offer ADSM with quantities
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that are large enough to cover all the energy demand and
reserve demand inside the distribution system at their retail
prices. Then DSOs clear the energy and reserve markets for
each hour and produce the clearing price and clearing quan-
tity for both markets aiming at maximizing social welfare.
DSOs inform µVPPs of their clearing quantity qEi,t (kW) and
clearing price CE

t (£/kWh) after clearing the energy mar-
ket; the clearing quantity qRUi,t /q

RD
i,t (kW) and clearing price

CRU
t /CRD

t (£/kWh) after clearing the upward/downward
reserve market. The same clearing prices CE

t /C
RU
t /CRD

t
(£/kWh) also apply to traditional retailers for their clearing
quantity qREt /qRRUt /qRRDt (kW) in the energy market, upward
reserve market and downward reserve market respectively.

The market frameworks of the current DSM and PDSM
are used in this paper as reference cases to demonstrate the
advantages of ADSM. The maximization of µVPPs’ profit
(or equally the minimization of their cost) in the current
DSM and PDSM can be easily formulated as mixed-integer
linear problem (MILP) and solved by commercial solvers.
The results are utilized to investigate the operation strategies
of µVPPs under different market setups in Section IV. This
paper concentrates on formulating the proposed ADSM equi-
librium model as a bilevel EPEC. The upper-level (UL) prob-
lem aims at maximizing the economic profit of each µVPP
and the lower-level (LL) problem aims at maximizing the
social welfare of the market clearing process. The objective
functions and constraints of the bilevel EPEC are presented
as follows:

B. µVPP PROFIT MAXIMIZATION UL PROBLEMS
The objective function of the UL problems is formed as:

max
i∈I

NT∑
t=1

{
CRU
t PRUi,t + C

RD
t PRDi,t − C

E
t P

E
i,t + C

E
t P

L
i,t

−

(
CGen
i PGeni,t + C

SU
i ui,t + CSD

i vi,t
)}

(1)

where the first two terms CRU
t PRUi,t + CRD

t PRDi,t represent
the revenue received from upward and downward reserve
markets. The third term CE

t P
E
i,t is the cost for energy bid.

If µVPP offers energy to the market, the term−CE
t P

E
i,t is

another source of revenue. The fourth term CE
t P

L
i,t is the

income from supplying µVPPs’ end-consumers. The income
and payment of the transactions between µVPPs and ADSM
are calculated by multiplying the offering/bidding quantities
by the clearing prices. The last term CGen

i PGeni,t + C
SU
i ui,t +

CSD
i vi,t is the generation cost of dispatchable generators (DG)

owned by µVPPs.
Subject to the following constraints

−oi,t−1 + oi,t − oi,k ≤ 0, 1 ≤ k − (t − 1) ≤ TGenon ∀i,∀t

(2)

oi,t−1 − oi,t + oi,k ≤ 1, 1 ≤ k − (t − 1) ≤ TGenoff ∀i,∀t

(3)

−oi,t−1 + oi,t − ui,t ≤ 0 ∀i,∀t (4)

oi,t−1 − oi,t − vi,t ≤ 0 ∀i,∀t (5)

ui,t − vi,t − oi,t + oi,t−1 = 0 ∀i,∀t (6)

PGeni ≤ PGeni,t oi,t ≤ P
Gen
i ∀i,∀t (7)

PGeni,t − P
Gen
i,t−1 ≤

(
2− oi,t−1 − oi,t

)
PGeni

+
(
1+ oi,t−1 − oi,t

)
RUi ∀i,∀t (8)

PGeni,t−1 − P
Gen
i,t ≤

(
2− oi,t−1 − oi,t

)
PGeni

+
(
1− oi,t−1 + oi,t

)
RDi ∀i,∀t (9)

−EXCHmax ≤ PEi,t ≤ EXCHmax ∀i,∀t (10)

PEi,t + P
Gen
i,t + P

W
i,t = PLi,t ∀i,∀t (11)

0 ≤ rGen,upi,t ≤ ωupP̄Geni ∀i,∀t (12)

0 ≤ rGen,dwi,t ≤ ωdwP̄Geni ∀i,∀t (13)

PGeni,t + r
Gen,up
i,t ≤ P̄Geni oi,t ∀i,∀t (14)

PGeni,t − r
Gen,dw
i,t ≥ PGeni oi,t ∀i,∀t (15)

PGeni,t − P
Gen
i,t−1 + r

Gen,up
i,t ≤

(
2− oi,t−1 − oi,t

)
PGeni

+
(
1+ oi,t−1 − oi,t

)
RUi ∀i,∀t (16)

PGeni,t−1 − P
Gen
i,t + r

Gen,dw
i,t ≤

(
2− oi,t−1 − oi,t

)
PGeni

+
(
1− oi,t−1 + oi,t

)
RDi ∀i,∀t (17)

0 ≤ PRUi,t ≤ r
Gen,up
i,t ∀i,∀t (18)

0 ≤ PRDi,t ≤ r
Gen,dw
i,t ∀i,∀t (19)

The variables involved in the UL problem include: the
energy bid/offer quantity PEi,t (kW) of the ithµVPP during
period t , positive value of the variable represents a bid to buy
energy while negative value represents an offer to sell energy;
the reserve offer quantity PRUi,t /P

RD
i,t (kW) of the ithµVPP

during period t; the DG power output PGeni,t (kW), binary oper-
ation variable oi,t , start-up variable ui,t , shut-down variable
vi,t and the available capacity rGen,upi,t (kW)/rGen,dwi,t (kW) of
upward/downward spinning reserve of the ithµVPP during
period t . The constants include: the operation cost CGen

i
(£/kWh), start-up cost CSU

i (£/kWh) and shut-down cost CSD
i

(£/kWh) of the DG owned by the ithµVPP; the transaction
limit EXCHmax (kW) between µVPP and ADSM; the upper
limit P̄Geni (kW) and the lower limit PGeni (kW) of the DG
output power in the ithµVPP; the minimum time TGenon (h)
that generator should be on and the minimum time TGenoff (h)
it should be off per day; ramp up limit RUi (kW/h) and
ramp down limit RDi (kW/h) that characterize the speed
of providing upward or downward spinning reserve of the
generator in the ithµVPP; the percentage of ωup/ωdw that
limits the maximum capacity of upward/downward spinning
reserve with regard to generation capability.

Equation (2) and (3) are the minimum on time and
minimum off time constraints for generators respectively.
Equation (4) - (6) define the start-up and shut-down vari-
ables. Equation (7) ensures the power output of each gen-
erator is within its capacity. Equation (8) and (9) apply
the ramping rate limits on the speed of each generator to
increase or decrease its power output. Equation (10) defines
the upper and lower limits of the energy bid/offer quantity.

VOLUME 5, 2017 8197



H. Fu, X.-P. Zhang: Market Equilibrium in Active Distribution System with µVPPs

Equation (11) is the power balance constraint between supply
and demand for each µVPP. Equation (12) and (13) set the
upper limit of upward and downward spinning reserve that
are available from each generator. In addition, the production
of upward or downward spinning reserve capacity should also
abide by the output power limit and ramping limit as indicated
by (14) - (15) and (16) - (17) respectively. Equation (18)
explains that the upward reserve capacity offer is originated
from ramping up the generator output. Similarly, constraints
(19) explains that the downward reserve offer is sourced from
ramping down the generator output.

C. DSO OPERATION COST MINIMIZATION LL PROBLEM
The objective function of the LL problem is formulated as:

Max
t∈T

{
NI∑
i=1

[
λEi,tq

E
i,t −

(
λRi,t + C

ULOC
i,t

)
qRUi,t

−

(
λRi,t + C

DLOC
i,t

)
qRDi,t

]
−λREt qREt − λ

RR
t

(
qRRUt + qRRDt

)}
(20)

where the term λEi,tq
E
i,t stands for the consumer benefit if the

ithµVPP acts as consumer in the energy market during period
t (the value of clearing quantity qEi,t is positive for consumer
µVPP). If theµVPP acts as producer, the term−λEi,tq

E
i,t repre-

sents the production cost (the value of clearing quantity qEi,t is

negative for producer µVPP). The term
(
λRi,t + C

ULOC
i,t

)
qRUi,t

is the production cost of the ithµVPP in the upward reserve
market, in which the marginal cost consists of the reserve
offer price λRi,t and lost opportunity cost CULOC

i,t . Similarly,

the term
(
λRi,t + C

DLOC
i,t

)
qRDi,t is the production cost of the

ithµVPP in the downward reserve market. The production
costs of traditional retailer in both energy and reserve market
are also included and they are calculated as λREt qREt and
λRRt

(
qRRUt + qRRDt

)
respectively. The social welfare of the

market clearing process is then derived by deducting the
overall production cost from the total consumer benefit.

The LL objective function (20) subjects to the following
constraints:

λEt ≤ λ
E
i,t ≤ λ̄

E
t ∀i,∀t (21)

λRt ≤ λ
R
i,t ≤ λ̄

R
t ∀i,∀t (22){

PEi,t ≤ q
E
i,t ≤ 0, if PEi,t < 0 ∀i,∀t

qEi,t = PEi,t , if PEi,t ≥ 0 ∀i,∀t
(23)

0 ≤ qRUi,t ≤ P
RU
i,t ∀i,∀t (24)

0 ≤ qRDi,t ≤ P
RD
i,t ∀i,∀t (25)

qREt ≥ 0, qRRUt ≥ 0, qRRDt ≥ 0 ∀t (26)

−qREt +
NI∑
i=1

qEi,t = 0 ∀i,∀t (27)

qRRUt +

NI∑
i=1

qRUi,t = δRU
NI∑
i=1

PLi,t ∀i,∀t (28)

qRRDt +

NI∑
i=1

qRDi,t = δRD
NI∑
i=1

PLi,t ∀i,∀t (29){
CULOC
i,t =CE

t − λ
E
i,t , if PRUi,t 6= 0, λEi,t < CE

t ∀i,∀t
CDLOC
i,t =λEi,t − C

E
t , if PRDi,t 6= 0, λEi,t > CE

t ∀i,∀t
(30)

The variables involved in the LL problem include: the
energy bid/offer price λEi,t (kW) of the ithµVPP during
period t; the reserve offer price λRi,t (kW) of the ithµVPP
during period t; the lost opportunity cost CULOC

i,t (£/kWh)
for upward reserve offer submitted by the ithµVPP dur-
ing period t; the lost opportunity cost CDLOC

i,t (£/kWh) for
downward reserve offer submitted by the ithµVPP during
period t; the clearing quantity qEi,t (kW) that is defined as
the portion of µVPP’s energy bid/offer quantity accepted
by ADSM; the clearing quantities qRUi,t /q

RD
i,t (kW) that are

defined as the portion of µVPP’s reserve offer quantities
accepted by ADSM; the clearing quantity qREt (kW) that is
retailer’s energy offer quantity accepted by ADSM; the clear-
ing quantities qRRUt /qRRDt (kW) that are retailer’s reserve offer
quantities accepted by ADSM. The constants include: the
retail energy price λREt (£/kWh) and retail reserve price λRRt
(£/kWh); the upper limit λ̄Et (£) and the lower limit λEt (£) of
the energy bid price during period t; the upper limit λ̄Rt (£) and
the lower limit λRt (£) of the reserve bid price during period t;
the percentage of δRU /δRD which defines the required upward
and downward reserve capacities with regards to the total
demand of all µVPPs during period t .

As for constraints, equation (21) - (22) defines the upper
and lower limits of the bid/offer prices in the energy market
and reserve market respectively. Equation (23) describes the
relationship between clearing quantity and bid/offer quan-
tity for the ithµVPP in the energy market: if the µVPP
acts as energy producer during period t , it is possible that
its offer quantity will be not accepted, partially accepted
or fully accepted. If the µVPP acts as energy consumer
during period t , then its bid quantity will be fully satisfied
under any condition. The same rules apply for the reserve
offer quantities submitted by the ithµVPP during period t as
equation (24)-(25) indicate. If the energy and reserve capaci-
ties produced by µVPPs can’t meet the demand, the rest will
be provided by traditional retailers as equation (26) - (29)
describe. The concept of lost opportunity cost is included in
equality constraint (30). It is defined as the difference in net
compensation for µVPPs between what their DERs receive
when providing regulation services andwhat the DERswould
have received for providing energy only [26]. For those
µVPPs who decide to reserve some of their capacities for
upward regulation service during the period when energy
market clearing price CE

t (£/kWh) is higher than the energy
offer price λEi,t (£), theywould have received an added revenue
at price CULOC

i,t (£/kWh) if the reserved capacities were sold
as energy offers. Similarly, if the energymarket clearing price
CE
t (£/kWh) is lower than the energy offer price λEi,t (£) and

the µVPPs’ output is still raised uneconomically to provide
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downward regulation, they should receive compensation at
price CDLOC

i,t (£/kWh) for the extra energy output that will
not bring any profit given the low market clearing price.

The bilevel EPEC formulation above demonstrates a
highly-coupled nature of the decision-making process for
both market participants and DSOs: In UL problem, µVPPs
derive their optimal bidding/offering strategies and sched-
ule their DERs’ generation based on the maximization of
individual profit, in which the quantities of energy/reserve
transactions are priced at the clearing prices determined in
LL problem. In LL problem, DSOs derive the clearing prices
and quantities based on the maximization of social welfare,
in which the clearing quantities of energy/reserve transactions
are priced at the original bid/offer prices from UL problem.
The highly-coupled nature requires the UL problem and LL
problem to be solved simultaneously. However, due to the
pessimistic assumption that µVPPs do not have any knowl-
edge of the acceptance for their bids/offers, it is hard to utilize
KKT conditions and transform the bilevel EPEC problem into
a single-level problem [27]. To solve this conundrum, a novel
coevolutionary approach is proposed in the next section.

III. FINDING EQUILIBRIUM OF BILEVEL EPEC USING A
COEVOLUTIONARY APPROACH
To solve the bilevel EPEC formulated in Section II, this paper
proposes a bilevel coevolutionary algorithm with real-coded
Genetic Algorithm (GA) Operators including selection,
crossover and mutation. Under the coevolutionary frame-
work, a µVPP is represented by a ‘‘species’’ i in the ecosys-
tem and the total number of species NI corresponds to the
total number of µVPPs participating in ADSM. The ‘‘indi-
vidual’’ of the species i is defined as the operation strategy set{
λEi,t ,λ

R
i,t ,P

E
i,t ,P

RU
i,t ,P

RD
i,t ,P

Gen
i,t , oi,t , ui,t , vi,t , r

Gen,up
i,t , rGen,dwi,t

}
of the ithµVPP for a scheduling period of 24 hours. For
species i in the kth iteration, there are NS number of indi-
viduals Ind ik,s which constitute a ‘‘population’’ Popik . The
UL and LL objective functions are utilized as two separate
fitness functions to assess the quality of the operation strategy
set represented by individuals Ind ik,s. While the UL fitness
function determines the fittest individual that brings the
maximum profit for species i among the entire population, the
LL fitness function provides a shared domain for all species
to interact with one another. After NK number of iterations,
the coevolutionary algorithm aims at finding the pure strategy
NE set

(
Ind ik,s

)∗
,∀i for all species. The pure strategy NE

satisfy the following conditions:

f ULi

((
Ind ik,s

)∗)
≥ f ULi

(
Ind ik,s

)
∀i (31)

f LL
((
Ind ik,s

)∗
|

(
Ind−ik,s

)∗)
≥ f LL

(
Ind ik,s|

(
Ind−ik,s

)∗)
∀i

(32)

For all species i inside the ecosystem, condition (31)
describes the UL optimality of the pure strategy NE set(
Ind ik,s

)∗
,∀i. It is the fittest individual among the entire

population that brings the maximum profit. Condition (32)
states the LL optimality of the pure strategy NE: if the
rest of the species −i find their UL optimal strategy set(
Ind−ik,s

)∗
,∀−i, the pure strategyNE

(
Ind ik,s

)∗
,∀i is the best

response for species i. No single µVPP can obtain a higher
margin by deviating unilaterally from its pure strategy NE
profile without decreasing the social welfare of the ADSM.

A. BUILDING BLOCKS OF THE
COEVOLUTIONARY ALGORITHM
1) INITIALIZATION
At the beginning of the iterative process, all elements in
the individual strategy string Ind i0,s are initialized with their
real value to form the initial population Popi0. The randomly
generated value should complywith its upper and lower limits
defined in constraints (2) - (19) and (21) - (22). Firstly, the
binary variables oi,t , ui,t , vi,t are initialized subject to con-
straints (2) - (6). Based on the derived operation variable oi,t
and constraints (7) - (9), the DG output PGeni,t is initialized.
Then the value of energy bid/offer quantityPEi,t can be derived
based on constraints (10) - (11). After PGeni,t is settled, con-
straints (12) - (17) and (18) - (19) initialize the value of
available reserve capacities rGen,upi,t /rGen,dwi,t and reserve offer
quantities PRUi,t /P

RD
i,t respectively. Finally, the bid/offer prices

for energy λEi,t and for reserve λRi,t are initialized based on
constraints (21) - (22).

2) SELECTION
The aim of selection in the coevolution paradigm is to form a
mating pool of individuals for reproduction. Fitter individuals
have a higher chance to pass on their profile to the succeeding
iteration and the offspring will in turn have even higher fit-
ness. The proposed coevolutionary algorithm uses an elitism-
based tournament selection method in which some of the
fittest individuals could transfer their unaltered profile to their
offspring [28]. In addition to the computationally efficient
tournament selection method, elitism concept is applied in
this paper to improve the performance of the algorithm by
preventing loss of good solutions. To select fitter individuals
for speciesi, firstly the rest of the species−imust choose their
best individual set

(
Ind−ik,s

)∗
,∀ − i based on UL optimality.

Then the individual Ind ik,s from current population Popik can
be evaluated with LL optimality as criterion. The elite indi-
viduals of species i are those with high LL fitness value, in
other words, they represent the best response of the ithµVPP
given the strategies of the others. The selection process will
then run several ‘‘tournaments’’ among the non-elite individ-
uals, after which the non-elites with low LL fitness value are
removed from the mating pool.

3) CROSSOVER
For the selected individuals in the mating pool, crossover
operation randomly chooses a position and the parts of two
parent individuals at the position are exchanged to form
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two offspring. In the proposed coevolutionary algo-
rithm, every individual has 24 points in its strategy
string which corresponds to the scheduling horizon of
24 hours. A multi-point crossover scheme is applied in
this paper which means every hour is a potential point
for crossover to take place. When crossover happens
at hour t , all elements included in the strategy string{
λEi,t ,λ

R
i,t ,P

E
i,t ,P

RU
i,t ,P

RD
i,t ,P

Gen
i,t , oi,t , ui,t , vi,t , r

Gen,up
i,t , rGen,dwi,t

}
of both parents will be exchanged. However, the crossover
operation may be disruptive to the parents’ genetic pro-
file because the new strategy string at hour t may con-
flict with the original strings at hour t − 1 and t + 1.
Therefore, the crossover operation should be supervised by
constraints (2) - (19).

4) MUTATION
After crossover operation updates the individuals in the
mating pool, there is a small probability for the algorithm
to perform mutation operation on updated individuals. This
GA operator will randomly choose a position of the indi-
vidual and change the value of the string to another value
within its feasible region. The probability of mutation is
small but the operation itself is indispensable because it
helps the search evade local optimums and prevents prema-
ture convergence [29]. When mutation happens at hour t ,
an element will be chosen randomly from the strategy string{
λEi,t , λ

R
i,t ,P

E
i,t ,P

RU
i,t ,P

RD
i,t ,P

Gen
i,t ,oi,t ,ui,t ,vi,t , r

Gen,up
i,t , rGen,dwi,t

}
and changed to another feasible value. Similarly, the mutation
process should also be supervised by constraints (2) - (19).

5) ENERGY AND RESERVE MARKET CLEARING
The process of energy and reserve market clearing deter-
mines the market clearing price, at which the transactions of
energy/reserve capacities are priced; and the market clearing
quantities, which are assigned to producers to dispatch their
generation resources. The offers from suppliers including
producer µVPPs and retailers are aggregated as a monoton-
ically increasing supply curve and the bids from consumer
µVPPs are aggregated as amonotonically decreasing demand
curve. At each hour, the energy market is cleared first by find-
ing the intersection of supply and demand curves. The price at
the intersection is defined as energymarket clearing priceCE

t .
Then the lost opportunity cost CULOC

i,t /CDLOC
i,t are obtained

based on equations (30). By matching the supply quantity to
the demand quantity as constraints (23) and (27) suggest, the
market clearing quantities qEi,t/q

RE
t are derived for µVPPs

and retailers respectively. The DSO then clears the reserve
market following the same procedure and derive the follow-
ing results: reserve market clearing prices CRU

t /CRD
t , market

clearing quantities qRUi,t /q
RD
i,t for µVPPs and qRRUt /qRRDt for

retailers. The market clearing process represents the LL prob-
lem and the maximal social welfare is achieved at the inter-
section of supply and demand curves. The results obtained in
this algorithmic block facilitate the calculation of LL fitness
value.

FIGURE 2. Coevolutionary algorithm workflow.

B. PROCEDURE OF THE COEVOLUTIONARY ALGORITHM
The workflow of coevolutionary algorithm in this paper is
shown in Fig. 2. Detailed procedure is described as follows:
Step 1) Initialize the first population for each species i.

There are NI number of populations and each pop-
ulation Popik contains NS number of individuals;

Step 2) Perform energy/reserve market clearing, obtain
UL and LL fitness value of the individuals in the
first population;

Step 3) Based on the UL and LL fitness value of the indi-
viduals in the previous iteration, perform selec-
tion, crossover and mutation to form new popula-
tion Popik ;

Step 4) Perform energy/reserve market clearing, obtain UL
and LLfitness value of the individuals in the current
population;

Step 5) For each species i, compare the individual(
Ind ik,s

)UL
with the highest UL fitness and the

individual
(
Ind ik,s

)LL
with the highest LL fitness;

Step 6) Repeat Step 3) to Step 5) until
(
Ind ik,s

)UL
=(

Ind ik,s
)LL

is achieved for every species simulta-

neously, output pure strategy NE
(
Ind ik,s

)∗
,∀i.

IV. COMPARATIVE PERFORMANCE STUDY
In the comparative performance study, the effectiveness of the
proposed coevolutionary approach in finding the equilibrium
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is investigated and demonstrated. Also, the operation behav-
iors of a single µVPP under different market structures are
analyzed, addressing the advantages of the proposed ADSM
over the current DSM and PDSM. The UK retail energy
price and reserve price are extracted from Nord Pool price
data 2016 [30]. Amodified IEEE 33 bus distribution system is
used and the supply and demand nodes of the example system
are aggregated into four µVPPs to form the oligopolistic
ADSM.µVPP1 has an average hourly demand of 930kW and
DER capacity of 930kW, of which RES capacity accounts
for 70% of the DER capacity. µVPP2 has a similar hourly
demand of 860kW and DER capacity of 860kW, but its RES
capacity accounts for only 30% of the DER. µVPP3 has the
highest hourly demand of 1445kW, the highest RES capacity
of 1500kW and the highest DG capacity of 1500kW. µVPP4
has a small demand level of 360kW and no DER assets.
By assigning different profiles to the participating µVPPs,
this paper studies the impact on µVPPs’ bidding strategies
brought by DER and RES penetration level.

For the parameters of the coevolutionary approach, the
population size, crossover rate and mutation rate are set as
60, 0.8 and 0.1 respectively. The high crossover rate is chosen
to give more genetic diversity within the population, promot-
ing the search for new feasible solutions. The low mutation
rate prevents the coevolutionary process from degrading to
random search and improve the computation efficiency [29].
The operation problems in the current DSM and PDSM are
formulated as MILP and solved using commercial solver
CPLEX 12.1.4. The proposed coevolutionary algorithm for
ADSM is coded in MATLAB and solved using embedded
solvers. The equilibrium of ADSM is found after execut-
ing 253 coevolutionary iterations for 14 hours, however, the
proposed method delivers pure strategy NE without loss of
accuracy.

FIGURE 3. Operation strategy of µVPP in current DSM.

A. CASE A – CONSUMER µVPP IN CURRENT DSM
Under the market structure of the current DSM, an optimal
energy dispatch is performed for µVPP3. Its operation strat-
egy is depicted in Fig. 3.

As shown in Fig. 3, µVPP3 submits nearly no energy bid
to the market. This µVPP is operated autonomously from the
grid due to its large DER capacity and it is indeed degraded
to a MG. During the period of 9 a.m. to 23 p.m., the demand

insideµVPP3 is satisfied by the combined output of RES and
DG since the generation cost is lower than the retail energy
price. However, the peak output power of DG barely exceeds
125kW compared with the rated value of 1500kW, showing
a poor utilization of the DER capacity. This is because DER
generation is restricted to be consumed inside µVPP under
the current DSM instead of exported for extra revenue.

B. CASE B – PRICE-TAKING PROSUMER µVPP IN PDSM
Under the market structure of PDSM, µVPP is permitted
to submit quantity bids/offers to the market for revenue.
However, they do not participate in settling the clearing prices
of both energy and reserve markets. The bidding/offering
strategy of µVPP3 in PDSM is shown in Fig. 4.

FIGURE 4. Offering strategy of µVPP in PDSM: (a) energy market;
(b) reserve market.

As a price-taker, one market player (µVPP or retailer) has
no strategic advantage over the others because they provide
a homogenous product. For DSO, it makes no difference to
accept the offer from a µVPP or from a traditional retailer.
Consequently, the offering strategy of a producer µVPP
can be characterized as ‘‘aggressive’’ (AGG) or ‘‘conserva-
tive’’ (CONS). In Fig. 4(a), µVPP3 can submit aggressive
energy offers to the market by keeping its DG running all day,
hoping for the acceptance of all the submitted quantities and
high profit. Alternatively, µVPP3 operates conservatively
and submits no energy offers. The DG is utilized only for the
demand inside µVPP3 thus the operation cost can be reduced
to minimum. Fig. 4(b) demonstrates similar behaviors in the
reserve market: aggressive µVPP would use the ramping
capability of its DG to make upward and downward reserve
offers to the market while conservative µVPP would offer
nothing. In a non-cooperative PDSM environment, price-
taking prosumer µVPPs have a hard time determining their
optimal offering strategies because they lack the market
power to influence the market outcome. Consequently, their
revenue from the market would vary significantly from the
anticipation.

C. CASE C – PRICE-MAKING µVPP IN ADSM
Under the framework of ADSM, µVPPs are permitted to
submit price-quantity bids/offers to the markets. The pro-
posed coevolutionary approach achieves pure strategy NE for
all participants in the market. No single µVPP can obtain a
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FIGURE 5. Energy bid/offer strategies in ADSM: (a) bid quantity a.m.;
(b) bid price a.m.; (c) bid quantity p.m.; (d) bid price p.m.

higher margin by deviating unilaterally from its pure strat-
egy NE profile without decreasing the social welfare of the
ADSM. Their bidding/offering behaviors in the energy mar-
ket are depicted in Fig. 5.
µVPPs’ behaviors in terms of bid price are analyzed based

on their bid quantities.µVPP1 andµVPP2 have similar DER
capacity and they both act as energy consumers for the first
half of the day as Fig. 5(a) indicates. However, µVPP2 has a
larger percentage of DG capacity in its DER which results
in lesser dependence on the imported energy. Therefore
Fig. 5(b) shows that µVPP2 tends to bid a lower price for its
energy import compared with µVPP1 knowing it can always
produce its own energy even the bid is rejected. µVPP3 acts
as a pure producer in the ADSM to compete with traditional
retailers. To gain strategic advantage, Fig. 5(b) shows high bid
price at 9 a.m. when µVPP3 exports low volume and low bid
price during 0 a.m. to 8 a.m. when it exports high volume.
µVPP4 is a pure consumer in the ADSM and has similar
load level with µVPP2 as Fig. 5(a) shows. However, the
lack of self-generation assets forces µVPP4 to bid a higher
price than µVPP2 as Fig. 5(b) depicts. Fig. 5(c) and Fig. 5(d)
describe the energy bidding/offering behaviors for the second
half of the day. A peak point of energy bid price trajectories is
spotted at 18 p.m. in Fig. 5(d) and it can be explained from the
viewpoint of energy market clearing process. At 18 p.m., the
aggregated demand of µVPP1, µVPP2 and µVPP4 exceeds
the supply quantity offered byµVPP3. In this case, traditional
retailers have to supply some or all of the demand at its
peak retail price £0.37. For consumer µVPPs, they tend to
submit higher bid price to guarantee the acceptance of their
demand bids; for producer µVPP3, it needs to submit a
lower bid price £0.2 to occupy some of the supplier market
share. For DSO who aims at maximizing social welfare,

FIGURE 6. Reserve offer strategies in ADSM: (a) upward offer quantity;
(b) upward offer price; (c) downward offer quantity; (d) downward offer
price.

TABLE 2. Impact of market structures on µVPP3’S operation.

the bidding/offering strategies at 18 p.m. produce the highest
consumer benefit and the lowest production cost. To sum up,
the bidding/offering strategies obtained by the coevolutionary
approach have achieved UL and LL optimality simultane-
ously.

Fig. 6(a) and Fig. 6(b) display µVPPs’ offering strategies
of upward reserve capacity while Fig. 6(c) and Fig. 6(d) show
µVPPs’ offering strategies of downward reserve capacity.
For upward reserve market, only µVPP2 and µVPP3 have
the DG large enough to provide upward ramping resources.
Their bid prices in Fig. 6(b) follow the economic rationale
to compete with traditional retailers: bid high price when the
reserve production is low and bid low price when the reserve
production is high. The same rule applies to determining the
downward reserve offer price shown in Fig. 6(d) as µVPP1-3
offer different volumes of downward reserve based on their
DG capacities.

To address the advantage of deploying an ADSM in the
distribution system, the impact of different market structures
on µVPP operation is demonstrated in Table 2. Six criterions
are used to characterize µVPP3 in the current DSM, PDSM
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and the proposed ADSM respectively: DG utilization rate
is calculated as the ratio of the average DG output power
over its rated power; Energy market income is the revenue
received from µVPP’s energy offers which are settled at
market clearing price; Reserve market income is the revenue
received from µVPP’s reserve offers which are settled at
market clearing price; End-user income represents the pay-
ment received from µVPP’s end-consumers for energy con-
sumption; DG cost calculates the operation cost of µVPP’s
self-generation assets; finally total profit is the net revenue
of µVPP from market activities. Under the current DSM
structure, consumerµVPP only receives an insignificant pay-
ment for exporting its excessive RES generation back to grid
at feed-in tariff. The DER assets within µVPP are utilized
poorly and their capacities are not exploited to generate extra
revenue. The PDSM structure shows a promising DG utiliza-
tion rate and a profit that is four times higher. However, these
improvements are based on an optimistic anticipation that
all the aggressive offers will be accepted by DSO. As price-
takers, µVPP under PDSM has no market power to influence
the market clearing result thus its actual profit may deviate
considerably from the anticipation. The market structure of
PDSM is impractical for µVPP to make a reliable decision.
On the other hand, the framework of ADSM gives µVPP
market power to obtain reliable bidding/offering strategies
that lead to secured net profit. Compared with the current
DSM, µVPP3’s offering strategy at the NE point shows a
good DG utilization rate of 31% and a considerable 14%
increase in the total profit. Above all, the projected return on
investment will be delivered as promised.

V. CONCLUSION
This paper has established a novel active distribution sys-
tem market (ADSM) which allows µVPPs to submit price-
quantity bids/offers of both energy and reserve resources.
Market power is granted to the DER assets by involving
their owners in the price-making process of the retail market.
A bilevel EPEC formulation has been presented to model the
operation of both energy and reserve market at the distribu-
tion level, addressing the maximization of all µVPPs’ profit
and the maximization of social welfare at the same time.
A coevolutionary approach has been successfully applied for
the first time to derive the pure strategy Nash Equilibrium
(NE) of a non-cooperative game under the market frame-
work of ADSM. It has been demonstrated that the proposed
coevolutionary method is effective when handling nonlinear
equilibrium problems with detailed market parameters.

Comparative case studies have been carried out to inves-
tigate µVPPs’ operation strategies under the market frame-
works of the current DSM, PDSM and ADSM. In ADSM,
simulation results have shown that the bidding/offering strate-
gies obtained at the pure strategy NE point have achieved
optimality for both upper-level problem and lower-level prob-
lem. Also, the configuration of µVPPs in terms of their DER
capacity and RES capacity has been proved to be a major
factor that influences the strategic bidding/offering behaviors.

Last but not the least, the proposed ADSM has been demon-
strated as a practical and economically sound framework.
Simulation results have pointed out that the behaviors of
µVPPs in energy and reserve market, even for those with
the same DER/RES capacities, can be significantly differ-
ent from one another. Compared with the current DSM, the
deployment of ADSM can better exploit the DER assets
and generate higher returns on investment. Compared with
PDSM, the framework of ADSM provides a secured antic-
ipation of the profit and can better guide µVPP owners to
make bidding/offering decisions.

The proposed market framework - ADSM can accommo-
date the emerging µVPPs in the current distribution system.
By introducing them as new entries to the local energy and
reserve markets, the retail segments of electricity will be
further liberalized and ultimately end-consumers will benefit
from a diversified electricity supply. The proposed EPEC
formulation and its coevolutionary solution provide valuable
guidance forµVPP owners to gain strategic advantages in the
upcoming retail competition. In addition, the proposed EPEC
formulation and its coevolutionary solution can help DSOs to
monitor and assess the market behavior.
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