I. Introduction
A linear Model Predictive Controller (MPC) solves, online in each sample instant, a finite time horizon optimal control problem of the form \begin{align*} V_{k}^{\ast}=\underset{{x_{k+i}, u_{k+i}}}{\min.}\quad & \sum_{i=0}^{N-1}\ell(x_{k+i}, u_{k+i})+\Psi(x_{k+N}) \tag{1a}\\ \mathrm{s}.\mathrm{t}.\quad &x_{k+i+1}=Ax_{k+i}+Bu_{k+i} \tag{1b}\\ &Ex_{k+i}\leq f\quad i=1, \ldots, N-1 \tag{1c}\\ &Tx_{k+N}\leq t \tag{1d}\\ &Gu_{k+i}\leq h\quad i=1, \ldots, N-1 \tag{1e} \end{align*} and implements the optimal solution, , as the input to the system in a receding horizon fashion.