Loading [MathJax]/extensions/MathMenu.js
IFROWANN: Imbalanced Fuzzy-Rough Ordered Weighted Average Nearest Neighbor Classification | IEEE Journals & Magazine | IEEE Xplore

IFROWANN: Imbalanced Fuzzy-Rough Ordered Weighted Average Nearest Neighbor Classification


Abstract:

Imbalanced classification deals with learning from data with a disproportional number of samples in its classes. Traditional classifiers exhibit poor behavior when facing...Show More

Abstract:

Imbalanced classification deals with learning from data with a disproportional number of samples in its classes. Traditional classifiers exhibit poor behavior when facing this kind of data because they do not take into account the imbalanced class distribution. Four main kinds of solutions exist to solve this problem: modifying the data distribution, modifying the learning algorithm for considering the imbalance representation, including the use of costs for data samples, and ensemble methods. In this paper, we adopt the second type of solution and introduce a classification algorithm for imbalanced data that uses fuzzy rough set theory and ordered weighted average aggregation. The proposal considers different strategies to build a weight vector to take into account data imbalance. Our methods are validated by an extensive experimental study, showing statistically better results than 13 other state-of-the-art methods.
Published in: IEEE Transactions on Fuzzy Systems ( Volume: 23, Issue: 5, October 2015)
Page(s): 1622 - 1637
Date of Publication: 20 November 2014

ISSN Information:

Funding Agency:


Contact IEEE to Subscribe

References

References is not available for this document.