Neural Network-Based Finite-Horizon Optimal Control of Uncertain Affine Nonlinear Discrete-Time Systems | IEEE Journals & Magazine | IEEE Xplore

Neural Network-Based Finite-Horizon Optimal Control of Uncertain Affine Nonlinear Discrete-Time Systems


Abstract:

In this paper, the finite-horizon optimal control design for nonlinear discrete-time systems in affine form is presented. In contrast with the traditional approximate dyn...Show More

Abstract:

In this paper, the finite-horizon optimal control design for nonlinear discrete-time systems in affine form is presented. In contrast with the traditional approximate dynamic programming methodology, which requires at least partial knowledge of the system dynamics, in this paper, the complete system dynamics are relaxed utilizing a neural network (NN)-based identifier to learn the control coefficient matrix. The identifier is then used together with the actor–critic-based scheme to learn the time-varying solution, referred to as the value function, of the Hamilton–Jacobi–Bellman (HJB) equation in an online and forward-in-time manner. Since the solution of HJB is time-varying, NNs with constant weights and time-varying activation functions are considered. To properly satisfy the terminal constraint, an additional error term is incorporated in the novel update law such that the terminal constraint error is also minimized over time. Policy and/or value iterations are not needed and the NN weights are updated once a sampling instant. The uniform ultimate boundedness of the closed-loop system is verified by standard Lyapunov stability theory under nonautonomous analysis. Numerical examples are provided to illustrate the effectiveness of the proposed method.
Page(s): 486 - 499
Date of Publication: 07 May 2014

ISSN Information:

PubMed ID: 25720005

Funding Agency:


Contact IEEE to Subscribe

References

References is not available for this document.