Turbo Segmentation of Textured Images | IEEE Journals & Magazine | IEEE Xplore

Turbo Segmentation of Textured Images


Abstract:

We consider the problem of semi-supervised segmentation of textured images. Existing model-based approaches model the intensity field of textured images as a Gauss-Markov...Show More

Abstract:

We consider the problem of semi-supervised segmentation of textured images. Existing model-based approaches model the intensity field of textured images as a Gauss-Markov random field to take into account the local spatial dependencies between the pixels. Classical Bayesian segmentation consists of also modeling the label field as a Markov random field to ensure that neighboring pixels correspond to the same texture class with high probability. Well-known relaxation techniques are available which find the optimal label field with respect to the maximum a posteriori or the maximum posterior mode criterion. But, these techniques are usually computationally intensive because they require a large number of iterations to converge. In this paper, we propose a new Bayesian framework by modeling two-dimensional textured images as the concatenation of two one-dimensional hidden Markov autoregressive models for the lines and the columns, respectively. A segmentation algorithm, which is similar to turbo decoding in the context of error-correcting codes, is obtained based on a factor graph approach. The proposed method estimates the unknown parameters using the Expectation-Maximization algorithm.
Page(s): 16 - 29
Date of Publication: 18 March 2010

ISSN Information:

PubMed ID: 21088316

Contact IEEE to Subscribe

References

References is not available for this document.