A neural network implementation of the moment-preserving technique and its application to thresholding | IEEE Journals & Magazine | IEEE Xplore

A neural network implementation of the moment-preserving technique and its application to thresholding


Abstract:

A neural-network implementation of the moment-preserving technique, which is widely used for image processing, is proposed. The moment-preserving technique can be thought...Show More

Abstract:

A neural-network implementation of the moment-preserving technique, which is widely used for image processing, is proposed. The moment-preserving technique can be thought of as an information transformation method which groups the pixels of an image into classes. The variables in the so-called moment-preserving equations are determined iteratively by a recurrent neural network and a connectionist neural network which work cooperatively. Both of the networks are designed in such a way that the sum of square errors between the moments of the input image and those of the output version is minimized. The proposed neural network system is applied to automatic threshold selection. The experimental results show that the system can threshold images successfully. The performance of the method is compared with those of four other histogram-based multilevel threshold selection methods. The simulation results show that the proposed technique is at least as good as the other methods.<>
Published in: IEEE Transactions on Computers ( Volume: 42, Issue: 4, April 1993)
Page(s): 501 - 507
Date of Publication: 30 April 1993

ISSN Information:


Contact IEEE to Subscribe

References

References is not available for this document.