Software productivity measurement using multiple size measures | IEEE Journals & Magazine | IEEE Xplore

Software productivity measurement using multiple size measures


Abstract:

Productivity measures based on a simple ratio of product size to project effort assume that size can be determined as a single measure. If there are many possible size me...Show More

Abstract:

Productivity measures based on a simple ratio of product size to project effort assume that size can be determined as a single measure. If there are many possible size measures in a data set and no obvious model for aggregating the measures into a single measure, we propose using the expression AdjustedSize/Effort to measure productivity. AdjustedSize is defined as the most appropriate regression-based effort estimation model, where all the size measures selected for inclusion in the estimation model have a regression parameter significantly different from zero (p<0.05). This productivity measurement method ensures that each project has an expected productivity value of one. Values between zero and one indicate lower than expected productivity, values greater than one indicate higher than expected productivity. We discuss the assumptions underlying this productivity measurement method and present an example of its use for Web application projects. We also explain the relationship between effort prediction models and productivity models.
Published in: IEEE Transactions on Software Engineering ( Volume: 30, Issue: 12, December 2004)
Page(s): 1023 - 1035
Date of Publication: 10 January 2005

ISSN Information:


Contact IEEE to Subscribe

References

References is not available for this document.