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Abstract—Plug-in electric vehicle (PEV) charging could cause
significant strain on residential distribution systems, unless tech-
nologies and incentives are created to mitigate charging during
times of peak residential consumption. This paper describes and
evaluates a decentralized and “packetized” approach to PEV
charge management, in which PEV charging is requested and
approved for time-limited periods. This method, which is adapted
from approaches for bandwidth sharing in communication net-
works, simultaneously ensures that constraints in the distribution
network are satisfied, that communication bandwidth require-
ments are relatively small, and that each vehicle has fair access
to the available power capacity. This paper compares the perfor-
mance of the packetized approach to an optimization method and
a first-come, first-served (FCFS) charging scheme in a test case
with a constrained 500 kVA distribution feeder and time-of-use
residential electricity pricing. The results show substantial ad-
vantages for the packetized approach. The algorithm provides all
vehicles with equal access to constrained resources and attains
near optimal travel cost performance, with low complexity and
communication requirements. The proposed method does not
require that vehicles report or record driving patterns, and thus
provides benefits over optimization approaches by preserving
privacy and reducing computation and bandwidth requirements.

Index Terms—Communication systems, plug-in electric vehicles,
smart charging.

I. INTRODUCTION

P LUG-IN electric vehicles (PEVs) have the potential to
facilitate a transportation future that is less dependent

on liquid fossil fuels. However, as PEV market penetration
increases, vehicle charging could strain aging power delivery
infrastructure. A number of recent papers have shown that
increases in PEV charging could have detrimental impacts
on medium and low voltage distribution infrastructure (e.g.,
[1], [2]), particularly where PEV adoption is highly clustered
[3]. With mass-produced PEVs coming to market and a range
of charging standards (AC Levels 1–3) established [4], it is
increasingly important to understand and mitigate negative
impacts that PEV charging might have on distribution system
components, such as underground cables and transformers.
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Implementing effective charge management (CM, also
known as smart charging) methods is one step to facilitate the
smooth integration of PEVs. Several previous studies (e.g., [1],
[2]) show that with effective CM schemes it is possible to sup-
port large numbers of electric vehicles even with constrained
electric power infrastructure. In many cases it is also possible
for PEVs to not only avoid negative impacts on the power
grid, but also to provide grid services, through Vehicle-to-Grid
(V2G) technology (e.g., [5], [6]).
The CM and V2G control schemes that have been proposed

in the literature, or in industry, generally fall into one or both of
the following categories:
1) Centralized optimization or control methods in which each
vehicle submits information to a central authority, which
in turn solves an optimization problem that produces a
charging schedule for each vehicle [7]–[12].

2) Decentralized methods, in which either utilities set a
pricing scheme (e.g., a two-period time-of-use price) and
vehicles self-schedule based on those prices [13]–[15], or
market-based scheme that generate prices from bid or his-
torical information, to which vehicle charge management
devices respond [5], [16]–[20].

These two approaches have a variety of advantages and disad-
vantages.
Centralized schemes have the advantage that they produce

optimal outcomes by minimizing costs and avoiding constraint
violations in the distribution system. However, optimization/
control methods require that vehicle owners provide informa-
tion (e.g., willingness to pay or anticipated departure times) to
a central authority and give up at least some autonomy over
the charging of their PEV. While the load-serving entity would
likely compensate the vehicle owner for this loss of control with
a reduced rate for electric energy, reduced autonomy could be
an impediment to the adoption of CM schemes. In addition, ve-
hicle owners are unlikely to know in advance their exact travel
schedule, which complicates the problem.
Dynamic pricing schemes, such as reduced rates for night-

time charging, do not have these disadvantages; drivers are free
to choose how to respond to change in prices. However, be-
cause not all vehicle owners will be price responsive, price-
based schemes do not guarantee that vehicle charging will not
produce overloads. In fact, under some conditions, time-differ-
entiated pricing could produce new load peaks that increase,
rather than decrease, aging in the distribution infrastructure [2].
The method in [21] seeks to combine the benefits of centralized
and dynamic pricing schemes, but has the disadvantage that cus-
tomers need to declare their willingness to pay for electricity in
order to set the parameters for the bidding system. One major
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impediment for purely price-based schemes is the concern ex-
pressed by many utilities that true real-time pricing schemes
would not be acceptable to electricity customers [22].
The stochastic nature of charging behavior is particularly

important to highlight. PEV arrival and departure times vary
substantially among different owners, days, and times-of-day.
While aggregate load for a region can be predicted with some
accuracy, distribution feeder loads are less predictable, due to
the smaller number of customers over which to average. Distri-
bution system load variability and uncertainty will grow even
further with an increase in distributed renewable generation.
Vehicle CM schemes that do not adapt well to this uncertainty
are unlikely to be successful.
The combination of random supply (available capacity on a

feeder, for example) and random demand for PEV charging is
analogous to the problem of sharing a constrained channel in
multiple access communication systems. This paper proposes
an approach where PEV charging is completed over multiple
short intervals using “charge-packets,” which are analogous to
discrete “data packets” that revolutionized communications.
Our approach leverages a probabilistic automaton, the design of
which originated in the decentralized control of node activity in
wireless sensor networks [24]. While the packetized approach
could be applied in a variety of power system contexts, this
paper focuses on the problem of ensuring that PEV charging
does not result in overloads in residential distribution compo-
nents (e.g., transformers or underground cables). Simulation
results (Section V) show that the inherent randomness in ve-
hicle charging enables constrained resources to be fairly and
anonymously shared.
Our approach builds on previous work by the authors and

others applying communication algorithms to the problem of
PEV charging. We extend our prior work [29]–[31] by simu-
lating realistic travel demand behavior, and by comparing the
packetized approach with other approaches to CM. Another
communication-inspired algorithm is proposed in [25], which
uses a more complicated communication algorithm, in order
to treat PEV charging as a continuously controllable variable.
Unlike many proposed smart charging methods (e.g., [1], [21]),
the charge-packet method does not require drivers to estimate
their future departure times.

II. THE COMMUNICATION CHANNEL ANALOGY

A. Characteristics of Modern Communications

Modern communication systems are characterized not only
by information that is digital in format but also by the way that
data are sent in multiple discrete packets, each of finite dura-
tion. Packet communications can occur over dedicated or shared
channels, the latter type we view to have analogous issues to
PEVs sharing the power distribution system. In the communi-
cations field, techniques that manage access to shared channels
(or bandwidth) are collectively known as media access control
(MAC) protocols and have as an objective the efficient use of
the bandwidth resource (measured by channel throughput) for
the load placed on the system [26]. This objective is analogous
to matching the demand for power to the available capacity of

a feeder, to ensure that high loads do not damage the infrastruc-
ture, or trigger instabilities (e.g., voltage collapse). A second
objective for MAC protocols is ensuring that latency does not
exceed the user’s requirements; we view the latency objective
to be analogous to PEVs receiving the requisite charge in the
requisite time, which is a primary concern to PEV owners. The
packetization of data allows both of these conflicting objectives
to be addressed simultaneously in communication systems.

B. Packetization of PEV Charge

Why is PEV home charging a candidate for packetized de-
livery? Firstly, a 5–8 kWAC Level 2 PEV charger is likely to be
the highest power load in a home; if many chargers in a neigh-
borhood were to run simultaneously, substantial infrastructure
degradation could result, particularly in older distribution sys-
tems. In addition, most PEV owners with Level 2 chargers will
not need to charge their vehicles immediately upon vehicle ar-
rival at home. Given fast charge rates, there is likely to be more
than sufficient time overnight to bring a PEV’s battery to the de-
sired state of charge (SOC) for the next day’s driving. In short,
it is typically not necessary that PEV charging be continuous
from start to finish.
Packetized charging breaks the required charge time into

many small intervals of charging (i.e., “charge-packets”). For
example, 4 hours of Level 2 charging could be accomplished
with 48, 5-minute charge-packets. A PEV (or its charging
station) would request the authorization to charge for the
packet’s duration. A charge-management coordinator device at
the distribution substation would assess local conditions and
determine whether additional load on the system can be ac-
commodated. If allowed, the PEV will charge for the duration
of the packet and then submit new requests for subsequent
packets until the battery is fully charged. If charging cannot be
accommodated, the PEV resubmits a request at a later time.
The accommodation or denial of charging is analogous to

the successful transmission of a data packet or a packet colli-
sion, respectively, in random access communication systems
in which users compete for available bandwidth. Benchmark
MAC methods developed for random access channels include
Aloha, Slotted-Aloha and Carrier Sense Multiple Access
(CSMA) [26], each of which requires very little (if any) over-
head communications between the source and loads in the
system. The MAC techniques provide a predictable throughput
(i.e., utilization of bandwidth) for a given stochastic load by
the network as a whole. However, individual user load is not
managed by MAC protocols and thus a different type of control
is needed if we wish to leverage packetization for the PEV
charge management problem.

III. A PROBABILISTIC AUTOMATON FOR PEV CHARGE
MANAGEMENT

A. Automaton Design

The problem of managing, in a distributed manner, the
individual activity rates (i.e., load) for entities in a large group
is similar to the control of active nodes in a wireless sensor
network and to the PEV CM problem. For the sensor-network
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Fig. 1. A three-state automaton, where , , and (
) represent the probability of a vehicle making a charge request. If at any

time the charger is set to urgent mode , the state machine transitions
to, and stays at, . If the vehicle is not in urgent mode , and the
transformer is congested , i.e., a charge request was denied to avoid
an overload, then the state machine transitions to a lower probability state.

problem, -state probabilistic automatons have been pro-
posed that are both simple to implement on computationally
constrained hardware and require minimal communications
for control [24], [27], [28]. Our earlier work, [24] and [28],
illustrated the ability of this approach to control participation
for a large range of nodes and activities levels in a manner
that ensured equity of participation among nodes. For PEV
charging, we leverage this automaton design, of which a simple
version is presented in Fig. 1.
As shown in the state diagram (Fig. 1), if the node (sensor or

PEV) is in its middle state, it will transmit during a particular
epoch (time period) with probability . In the PEV applica-
tion, this “transmission” corresponds to the PEV requesting a
packet of charge for a fixed length of time (or epoch). If the
request can be supported by the infrastructure, the vehicle is al-
lowed to charge for one epoch. In the communications context
this would mean being “rewarded” by the channel, through suc-
cessful transmission of the data. With a successful request, the
state machine moves to the next higher probability state
and transmits during the next epoch with probability .
If the request was not successful, the PEV would not charge for
the epoch, would move to the next lower probability state, and
would request at the next epoch with probability . Prior
work demonstrated that this automaton approach could adapt to
scenarios where the distribution capacity varies over time [29].
For fair and consistent treatment across all PEVs, each user’s

automaton would have the same design. However, in order
to ensure that drivers who need to charge their vehicles more
quickly are able to do so, the design can be adjusted to give
such vehicles a higher priority. In our design, each charger
would have an “urgent” mode [30], which, when selected by the
user, increases the probability of charge requests, and also the
price of electricity. As implemented in this paper (see Fig. 1)
“urgent” vehicles request charge at each epoch with
[31].

B. Possible Implementation Approaches

Key advantages of the proposed packet-based CM approach
are that (1) the scheme can be used to manage constraints
anywhere in a distribution system, (2) the communication
requirements are minimal, and (3) customer privacy is main-
tained. Here we discuss these advantages by describing possible

ways to implement the required communications (broadcast
vs. point-to-point communications) and various power system
constraints that the algorithm could be used to address.
The packetized method can be implemented to mitigate

overloads at a variety of locations within a distribution system,
such as avoiding thermal overloads in underground cables,
low-voltage service transformers, or medium voltage distri-
bution transformers, or avoiding under-voltage conditions in
the network, or (using a hierarchical design) any combination
of these constraints. In each case, a charger automaton would
communicate with an aggregator responsible for managing
a particular constraint. For the case of medium voltage con-
straints, the aggregator could be located at the distribution
substation. For the case of service-transformer constraints, the
aggregator would likely be located at the transformer. The only
data that would flow from the PEV charger to the aggregator
would be charge-packet requests. The aggregator would re-
spond to requests only based on available capacity. In each
of these cases, communications could occur over Advanced
Metering Infrastructure systems, which typically have very low
communications bandwidth and high latencies, emphasizing
the importance of a scheme that makes limited use of this
bandwidth.
It is possible to implement communications for the packe-

tized method with either one-way (simplex) or two-way (du-
plex) data flows. In the duplex case, the aggregator would re-
spond to each request individually with either an approval or
denial. In the simplex case, the aggregator would broadcast the
state of the resource (either overloaded, or not-overloaded) and
chargers would make their request locally by merely randomly
“listening” to the broadcast signal. The latter version has advan-
tages in terms of privacy, as the transformer is blind to who is
receiving permission to charge.
These approaches represent conceptual extremes on how the

packetized CM technique could be implemented. Note that com-
binations of these schemes could be employed simultaneously.
For example, a PEV charger might send requests to an aggre-
gator at the substation only if a service transformer’s broadcast
signal indicated that there was local capacity available. Because
vehicle chargers using the packetized method only charge when
there is sufficient capacity in the system, our approach ensures
that PEV loads will not cause overloads in components that are
monitored by the system.

C. Illustrative Results for a Service Transformer

To illustrate the operation of our approach, this section
demonstrates how the charge-packet method would operate
for the case of a constrained low-voltage service transformer.
In this example scenario, a transformer has a peak load limit
of 30 kVA and serves 20 homes and 10 PEVs. The baseline
residential load patterns were the same as used in [2], scaled to
an average of 1 kVA per home, with a 0.9 power factor. The
PEV travel patterns were randomly sampled from travel survey
data [32] for New England, as described in [2]. Each vehicle
was assumed to charge using AC Level 2 charging rates (7
kW at 1.0 power factor). The electric vehicle characteristics
roughly reflect those of the GM Volt, with an efficiency of 4.46
km/kWh in electric mode and 15.7 km/L in gasoline mode, and
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a 13 kWh usable battery capacity. While all of the simulation
results in this paper are for series Plug-in Hybrid Electric
Vehicles (PHEV), the packetized method could just as easily
be applied to pure battery electric vehicles (BEV). However,
for the BEV case, the travel survey data are likely to be a less
accurate representation of travel behavior, since BEV drivers
may adjust their travel patterns given the reduced range of the
vehicle. For this reason we simulated PHEVs rather than BEVs.
In this paper, we assumed that drivers can decide to choose

between urgent or non-urgent charging modes and that, once
chosen, this choice is constant during the day (the simulation
duration). In the urgent mode, the vehicle requests charge re-
gardless of the price of electricity, and its automaton stays at
(the highest probability). In the non-urgent mode, the vehicle
requests charge only during off-peak hours, and its automaton
can go to lower states in case of charge denial.
For our first illustrative example, we used the following as-

sumptions. First, all PEVs operate in the non-urgent charging
mode, and thus do not request charge during peak hours (8
a.m. to 8 p.m). Second, each PEV charger was managed with
a three-state automaton as illustrated in Fig. 1, with
request probabilities of , and . Fi-
nally, time epochs were set to 15 minutes.
Fig. 2 shows the simulation result for this example. The

top panel shows the transformer load with and without PEV
charging. While the load approaches the 30 kVA limit, the
constraint is satisfied over the entire period. The middle panel
shows the status of each PEV over the day, with white bands
showing the randomly scattered 15-minute periods during
which vehicles were charging (note that vehicles are sorted by
the time at which they arrive at home for evening charging).
The lower panel shows the changing automaton states over the
day, illustrating that during off-peak hours, the automatons are
more likely to sit in the lower state . This is notable since
these states are determined locally based only on the success of
the vehicle’s most recent charge request.

IV. COMPARISON CHARGE MANAGEMENT SCHEMES

The results in Fig. 2 illustrate how the decentralized charge-
packet CM approach can be used to keep transformer loads
below a desired limit. This section describes two comparison
schemes that were used to evaluate and illustrate the relative
merits of the packetized approach. As stated in Section III, the
results that follow assume that all vehicles are series PHEVs,
which use gasoline after their batteries are fully depleted.

A. First-Come, First-Served Charge Management

A simpler decentralized approach to the CM problem would
be a first-come, first-served (FCFS) method in which vehicles
are allowed to charge as soon as they arrive home and can con-
tinue to charge, so long as there is sufficient capacity available.
As we will show, this approach puts vehicles arriving home at a
later time at a disadvantage, should there be a capacity constraint
in the system. Like the charge-packet method, this approach is
largely decentralized, is low in computational complexity, en-
sures that charging will not exceed the feeder capacity, and can
be implemented with equivalent limited communications. In our

Fig. 2. Illustration of the charge-packet method for a service transformer with
a 30 kVA limit. (a) Load curve, showing the residential and the aggregate trans-
former load. (b) PEV status with gray shades indicating: A: PEV is away, HN:
PEV is at home but not requesting for charge (either the battery is full, or it
is during peak hours), HM: PEV requested a charge packet, but was denied
to avoid transformer overload (charge mitigation), HC: PEV is at home and
charging. (c) PEV automaton state number with the gray shades showing each
automaton’s state at the end of the epoch.

FCFS implementation, PHEVs are allowed during both peak
and off-peak hours. Once charging begins, it continues until one
of the following occurs: the battery is fully charged, the PHEV
leaves home, or the network (transformer or feeder) becomes
overloaded by an increase in non-PHEV load. In the latter case,
the system randomly chooses a vehicle to stop charging.
Fig. 3 shows results from the FCFS approach for the same

10-vehicle scenario as in Fig. 2. In this scenario, vehicles have
more continuous charging patterns (as seen by the continuity in
the white bands in the lower panel). Because time-of-use prices
are not considered by PHEVs in this method, they charge re-
gardless of the time of day, as long as the transformer is not
overloaded. In this case, vehicles that arrive later in the day or
are initially denied charge are at a disadvantage because they
cannot start charging until there is sufficient capacity to support
additional PHEV charging. As a result PHEVs 9 and 10 do not
start charging until the early hours of the morning [Fig. 3(b)].
In contrast, the randomized nature of the packetized approach
solves this fairness problem by requiring vehicles to request new
packets at each epoch, providing vehicles with equal access to
the resource, regardless of arrival times. In the packetized simu-
lation (Fig. 2), vehicles 9 and 10 charge during several intervals
during the night, with the first packets shortly after vehicle ar-
rival. In Fig. 3, PHEVs 9 and 10 do not get any charge until after
1 and 2 am respectively. The extent to which vehicles get equal
access to charging is quantified and compared in Section V (see
Fig. 7).
The FCFS charging scheme is a useful comparison scheme

for two reasons. First, it illustrates how much charging costs
increase, if PHEVs are not responsive to time-of-use prices,
having the same travel pattern as in packetized chargingmethod.
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Fig. 3. Sample illustration of the FCFS charging method. (a) Load curve (b)
PEV status using the same gray-scale codes as in Fig. 2.

Fig. 4. Illustrative results for optimal charge management. (a) Load curve. (b)
PEV status with gray levels showing the amount of energy given to each PEV
at each hour. In the gray-level bar, “A” shows the time when the PHEV is away.
When at home, hourly charge quantities vary between 0 and 4.64 kWh, which
is the maximum quantity delivered in this example.

Second, the FCFS method illustrates the potential of the packe-
tized approach to provide equal access to constrained resources
for all PHEVs.

B. Optimal Charge Management

The second comparison method is a centralized optimal CM
scheme, which we use to identify the minimum cost charge sce-
nario for each travel pattern and compare that cost to that of the
packetized case under a two-rate, time-of-use residential tariff.
A critical distinction for the optimal case is that the model as-
sumes that PHEV charge rates can be continuously controlled
between zero and the full charge rate. Also, and significantly,
the travel behavior for each user must be known in advance for
the optimization scheme. As in the other cases, all vehicles were
assumed to be serial plug-in hybrid electric vehicles, with gaso-
line used only after the usable battery capacity was expended.
The optimization problem formulation is a mixed integer

linear programming model based on the approach in [12]. Only
the objective function and our modifications to the model are
described here; the reader is referred [12] for further details.
The objective in the optimization method is to minimize the

retail costs to vehicle owners associated with traveling the miles
described in the travel survey data. Because the vehicles are

PHEVs, and the homes are charged for electricity using time-of-
using pricing, there are three fuels that can be used for charging:
on peak electricity, off peak electricity, or gasoline. The re-
sulting objective (cost) function is given in (1):

(1)

where and are the price of electricity and the
charging power of vehicle at time ; is the charge epoch
length; is the overall efficiency of the charging system

; is the price of gasoline;
is the distance traveled after the battery was depleted (Charge
Sustaining, CS mode); is the CS mode vehicle
efficiency; and and are the number of epochs and vehicles,
respectively. In our implementation, one-hour epochs were
used , and was a continuous variable that varied
between 0 and 7 kW. In order to obtain consistent results, the
following two constraints were added to the model in [12]:

(2)

(3)

where is the total residential load at time , is the load
limit for the transformer or feeder, and is the total
distance traveled by vehicle at time . Constraint (2) ensures
that the transformer is not overloaded, and (3) forces PHEVs
to charge as soon as possible, so long as the total cost is not
affected. In other words, if the total distance traveled by PHEV
is zero in two consecutive time slots (if the PHEV is plugged

in at home) and the price of electricity is the same at time and
, the charging power of vehicle ’s battery should be greater

at the earlier time slot.
Fig. 4 shows results for this optimal charging scheme for the

10-PEV case considered in Figs. 2 and 3. As a result of allowing
vehicles to charge at any rate, the approach chooses charge rates
that are lower than the full Level 2 rate. This type of “Unidirec-
tional V2G” [5] has advantages in terms of more refined con-
trol, but requires additional communication and coordination.
As expected, optimal CM fully utilizes the transformer capacity
during off-peak hours, but only if travel plans are fully known.
The other two methods also keep loads below the power limit,
but with somewhat more variability.

V. RESULTS

This section compares the packetized approach to the op-
timal and FCFS cases, and to variants of the packetized ap-
proach, for a larger number of homes and vehicles. Specifically,
we simulated a 500 kVA medium voltage transformer serving
320 homes, each with 1 kVA average load. Each home has
two vehicles [33] (i.e., 640 vehicles in total), either or both of
which could be a PHEV depending on the PHEV penetration
level. The number of homes was selected such that the peak
residential load was below the transformer’s rated load. We as-
sumed that customers were charged for electricity according to
a two-rate, time-of-use residential tariff in which the peak (8
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a.m. to 8 p.m.) electricity rate is and the
off-peak rate is . These assumed values
are representative of (though less extreme than) current retail
time-of-use rates in the Northeastern US [34]. For the packe-
tized case, we assumed that vehicles in urgent charging mode
were charged the peak price ($0.14/kWh) during peak hours.
It is important to note that this $0.04 difference between ur-
gent and non-urgent rates is likely conservative, since the cost
to utilities of providing non-urgent charging is likely to be only
slightly higher than off-peak wholesale energy costs, which are
frequently $0.02–$0.03/kWh in the Northeastern U.S. [35].
In order to obtain a distribution of outcomes over a variety

of likely travel patterns, 100 unique vehicle travel patterns were
randomly selected from the survey data (see [2] for details of
this Monte-Carlo model).

A. Comparing Packetized Charging to Optimal and FCFS
Charge Management

In this section the packetized approach is compared to results
from the FCFS and optimal method for the larger scenario. For
the packetized method, we modeled a two-state automaton, with
request probabilities of and . Furthermore,
vehicles were set to urgent mode (for the packetized approach)
based on the solution from the optimization: if PHEV charged
during peak hours in the optimization results, was set to ur-
gent charging mode. Essentially this reflects the assumption that
drivers were able to estimate their need for urgent charging.
We simulated three different levels of PHEV penetration:

12.5% , 25% and 50% .
Note that these high penetration levels are relatively unlikely in
the near term for the aggregate vehicle-fleet in most countries.
However, it is not unlikely that some residential neighborhoods
could have PEV penetrations that are substantially higher than
that of aggregate. As a result of this, and the fact that temporal
patterns in non-residential loads differ from residential patterns,
we assume that the simulated PHEVs do not impact the two-tier
time-of-use price. We also assume that the aggregate system
load curve, which would include commercial and industrial
customers, is different from the residential load shown in
Fig. 5, which shows the baseline and total load for 25% PHEV
penetration (160 PHEVs) for each CM scheme. In order to
make a clear comparison, we chose 1-hour time slots for the
FCFS and optimization method, and 1-hour request intervals
and packet lengths (i.e., epochs) for the charge-packet method.
Fig. 5 shows that the PHEVs in the charge-packet case use
slightly more peak hour charging, than in the optimization
case, which increases the overall costs for the charge-packet
method somewhat. However, the presumption is the unrealistic
requirement that the central optimization approach can obtain
perfect information about travel plans. What is notable is that
the charge-packet scheme keeps loads below the limit, with
costs that are nearly optimal as the load presented to the system
is adjusted over time and distributed across PEVs in the system.
We compared the average total travel cost per PHEV over

100 one-day Monte Carlo simulations. We assigned each ve-
hicle a random travel pattern from the survey data. The same ve-
hicle-travel pattern combinations were used identically for each

Fig. 5. Daily load curve showing non-PEV residential load and the aggregate
load with 25% PHEV penetration.

scenario, to ensure a fair comparison. The results for two dif-
ferent PEV penetrations (12.5% and 50%), and two different
battery capacities are shown in Fig. 6. The gasoline, off-peak
and on-peak electricity costs are shown separately. From Fig. 6,
we can see that the total travel cost of the charge-packet method
is slightly more than that of the optimization method, but much
less than the FCFS method. The charge-packet costs are slightly
greater because urgency settings were constant during the day,
based on the realistic assumption that drivers are not perfect op-
timizers. The FCFS method is more costly because in this case
drivers do not differentiate their charging based on the price of
electricity. The result is that in the FCFS method, vehicles con-
sume more peak-hour electricity than in the other methods. One
exception is the case of 50% penetration and 24 kWh batteries,
where all charging methods use the entire transformer capacity
during off-peak hours, but the optimization method can opti-
mally allocate charging to those PEVs that cannot get peak-hour
charging. In other charging methods, some PEVs that are not ca-
pable of receiving peak electricity (because of not being home)
do not get enough charge overnight, and must use the most ex-
pensive fuel, gasoline. It should be noted that in our simulations
peak electricity at $0.14/kWh is still cheaper than gasoline in
terms of $/km travel.
Generally, in the higher PEV penetration scenarios, there is

insufficient off-peak electricity to allow all vehicles to fully
charge their batteries, resulting in more peak electricity usage
for the optimization and packetized scenarios. Because of this,
increased PEV penetrations resulted in a slight increase in travel
costs for the optimization and packetized cases. For example, in
the 12.5% PEV penetration case, vehicles can use more off-peak
electricity than in the 50% PEV penetration case, where peak
electricity is used more.
As one would expect, the results indicate that larger battery

capacities result in reduced use of the most expensive fuel, gaso-
line, and thus reduce travel costs. However, the impact of the
larger batteries is different in low and high PEV penetration
cases. In the low penetration case, more off-peak electricity can
be used for the larger battery, as more transformer capacity is
available; in the high penetration case, the transformer capacity
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Fig. 6. Average total travel costs in 100 Monte Carlo simulations, showing gasoline, peak and off-peak electricity costs separately in four case studies with
different PEV penetrations and battery capacities (bars show the average and black lines show 10th to 50th and 50th to 90th percentile).

is exhausted for both the 13 kWh and 24 kWh battery cases
during the off-peak hours, making the benefits of larger batteries
less clear.
Most importantly, these results show that the cost of using the

packetized method is only 0.9% to 5.2% greater than what we
found for the optimal CM case (as opposed to 3.1% to 14.1%
for the FCFS CM scheme). The charge-packet method requires
much less information from the PEV owner (only the choice of
an urgency setting) and requires far less two-way communica-
tion than would be required to implement centralized optimiza-
tion method. In summary, we find that the charge-packet method
can achieve near optimal costs, while preserving driver privacy
and being robust to random changes in travel behavior.

B. Comparing Variants of the Charge-Packet Method

The automaton used in the packetized PEV charger allows
PEV charging to adapt to reduce the impact on the distribution
system, such as overloaded transformers or feeders. However,
different automaton probabilities and structures will change the
performance of the charge-packet method, particularly with re-
spect to the burden on the communications infrastructure. To
investigate the performance of the charge-packet method, we
introduced the idea of differentiating between charge-packet
lengths, i.e., the time epoch a PEV is given permission to charge,
and request intervals, i.e., the time epoch between two requests
for charge.
We simulated the charge-packet method with different au-

tomaton probabilities, packet lengths (5-minute and one-hour),
and request intervals (5-minute and one-hour). The results were
compared across three metrics: 1) average total cost, 2) a mea-
sure of the extent to which the method provided each vehicle
with equal access to the charging resources, and 3) the number
of messages transmitted by the PEVs or the transformer, per ve-
hicle-day, assuming the bi-directional communication (duplex)
case is implemented (see Section III-B).
One of the problems observed with the FCFS charging case

(Section IV-A)was that vehicles that began charging earlier than
others, before a period in which chargemitigation occurred (typ-
ically early evening hours), were not required to stop charging
when new vehicles arrived. As a result, vehicles that arrived
later in the day frequently were not allowed to begin charging

until capacity in the system was released, effectively giving
them “less equal” access to charging resources. In order to mea-
sure the extent to which vehicles were given equal access to
grid resources under different scenarios, we defined an Equal
Access Metric (EAM) to assess the “fairness” of each method.
For this purpose, we find the probability of charge mitigation for
each vehicle , , by dividing the number of time slots that
the PEV charge request is denied by total number of time slots
that the PEV is requesting charge from the transformer. was
computed only for off-peak hours, when all vehicles, whether in
urgent or non-urgent mode, were requesting charge. Given the
standard deviation of over all , , was cal-
culated as follows:

(4)

ranges between 0 and 1, which means that has
the same range. Therefore, a method with perfectly equal access
will have , and lower values of indicate that
some vehicles are given more access than others. The rationale
for this metric is that as long as all the PEVs are mitigated with
the same probability (i.e., the same ratio of mitigation to total
requests) the method maintains its fairness.
Communication burden was measured by counting the

number of messages exchanged over the communications
network per vehicle per day. Following the two-way commu-
nication system design, we assumed that each charge packet
request requires one message submission to the aggregator. If
the PEV gets a reply (one message), this means that the request
is approved; otherwise the charge request is denied.
Fig. 7 shows these three metrics, for three different charge

time-interval combinations and four different state machines,
along with results for the FCFS charging method. Time-interval
combinations are defined using the notation , in which
is the interval of times between requests and is the length
of the charge packet, both in minutes. The three time-interval
combinations compared were 60/60, 5/60 and 5/5, and the state
machines were ,

, and
. As expected, smaller

request intervals and charge-packet lengths reduced charging
costs, but increased communication costs. The 5/60 gives about
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Fig. 7. Comparison of FCFS charging and variations of the charge-packet method. (Top) Average total costs over 100 Monte Carlo simulations, with shades
indicating gasoline (black), peak (gray) and off-peak (white) electricity costs. (Middle) The extent which consumers have equal access to the available capacity.
(Bottom) Communication burden for the various methods. and in (e.g., 60/60) show the request interval and the packet length in minutes, respectively.
See the text for definitions of the state-machine probabilities .

the same travel cost as 5/5, but at the expense of fairness (re-
duced EAM). It is possible that excessively frequent on/off cy-
cles could have adverse effects on the battery or charging sys-
tems. If this was the case, the 5/60 method could be preferable,
given that the increase in cost is negligible. Note that 5/60 out-
performs 60/60 in terms of equal access.
The results also suggest that using state-machines with
rather than states, or with lower transition probabili-

ties, can substantially reduce the burden of CM on the communi-
cations system. This notion agrees with the results obtained pre-
viously for automaton control applied to wireless sensor node
participation [24]. However, these changes also result in small
increases in travel costs. If communications bandwidth is not
a constraint, the 5/5 charge-packet is superior in terms of both
total cost and equal access.

VI. CONCLUSIONS

This paper draws similarities between the problem of man-
aging the charging of electric vehicles and that of providing
multiple devices with access to a bandwidth-constrained com-
munications channel. We propose to treat PEV charging as
a random access problem where charge is delivered through
many “charge-packets.” As with random access communica-
tion channels, the packetization of charge allows distribution
system objectives (i.e., efficient use of available resources
without overloading the network) and customer objectives
(reducing travel costs) to be achieved simultaneously. Lever-
aging this approach, this paper presents a new decentralized,
automaton-based charge management strategy, which preserves
users’ privacy more than many existing charge management
schemes. Simulations of packetized charging in a constrained
residential distribution feeder indicate that the cost increase

of our method over an omniscient centralized optimization
method (which is untenable in its information requirements)
is only 0.9% to 5.2%. However, in comparison to the optimal
approach, the charge-packet technique can be implemented
with first-generation low-bandwidth advanced metering infra-
structure.
While the simulations in this paper are for plug-in hybrid

electric vehicles charging in a residential distribution network,
the packetized method could be adapted and applied to other
thermal or battery storage loads. Battery electric vehicles are
likely to have somewhat different charging and travel charac-
teristics than PHEVs: BEV owners would probably take fewer
very long trips, and are likely to request the “urgent” charging
mode more frequently. Similarly, the method could be adapted
to the management of thermal loads, such as HVAC and water
heating. Future work will investigate these adaptations.
Finally, it is important to note that the charge packet approach

would not be desirable if discrete switching caused substantially
accelerated battery degradation. While detailed analysis of bat-
tery impacts are beyond the scope of this paper, evidence from
prior research suggest that charging Lithium Ion batteries at a
constant rate resulted in no aging benefit, relative to a variable
changing rate [36], and that pulsed charging can, under some
circumstances, be beneficial to battery life [37].
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