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An Efficient PSTD Algorithm for Cylindrical Coordinates

Qing Huo Liu and Jiang Qi He

Abstract—A pseudospectral time-domain (PSTD) algorithm is de-
veloped to overcome limitations in the conventional solution methods
for Maxwell’s equations in cylindrical coordinates. It is based on the
fast Fourier transform (FFT) representation of spatial derivatives and a
centered grid. The main contributions of this algorithm are to eliminate
the singularity problem at the axis and to allow a larger time step. It uses
a coarse grid close to the Nyquist sampling density provided that the
geometrical modeling does not require fine cells. It reduces the required
number of unknowns and the number of time steps in the finite-difference
time-domain (FDTD) method and is efficient for large-scale problems.

Index Terms—Finite-difference time-domain (FDTD), perfectly matched
layers (PML), pseudospectral time-domain (PSTD), time domain analysis.

I. INTRODUCTION

The finite-difference time-domain (FDTD) method has been
enjoying its widespread applications in the simulations of transient
electromagnetic wave propagation and scattering since it was first
proposed by Yee in 1966 [1]. However, as the available computer
memory and computational speed grow rapidly so that increasingly
large problems are being solved, the phase dispersion error also
increases. Hence, the required grid density (number of cells per
wavelength) in the FDTD method also increases in order to maintain
the same accuracy.

In cylindrical coordinates, the conventional FDTD method encoun-
ters yet two more difficulties: 1) the requirement for a very small�t
because of the high concentration of cells near the cylindrical (z) axis
and 2) the singularity at the cylindrical axis. Although, various reme-
dies have been proposed, the treatment is not straightforward and re-
quires extra manipulations and computation time. In this work we pro-
pose a pseudospectral time-domain (PSTD) method with a perfectly
matched layer (PML) absorber for three-dimensional (3-D) cylindrical
and two-dimensional (2-D) polar coordinates to overcome these diffi-
culties and to significantly increase the solution efficiency.

II. FORMULATION

In the conventional FDTD method [1] for Maxwell’s equations in
cylindrical coordinates, a staggered Yee grid is used [2]. The central
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differencing scheme for spatial and temporal derivatives has a second-
order accuracy.

Recently, a pseudospectral time-domain (PSTD) algorithm was pro-
posed for electromagnetic and acoustic waves in an attempt to increase
the order of accuracy [3], [4]. In this work, we develop the PSTD algo-
rithm for electromagnetic waves in cylindrical coordinates. We use the
fast Fourier transform (FFT) to approximate the spatial derivatives and
the cylindrical PML [5]–[7] to eliminate the wraparound effect. Here
we use the PML formulation originally proposed by Teixeira and Chew
[5], and later improved by He and Liu [7] for cylindrical coordinates.

In cylindrical (�; �; z) coordinates, we define the complex coordi-
nates (~�; ~�; ~z) in the frequency domain according tod~�=d� = (a� +
i!�=!), ~� = �, andd~z=dz = (az + i!z=!), where the real variables
a� and!� (� = �; z) are the scaling and attenuation factors in the
PML. Then, we can derive the time-domain split Ampere’s law for a
conductive medium as [7]
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The other set of equations for updatingH can be obtained by duality.
In the above, the split field components are defined such that

E =
�=�; �; z

�̂
� 6=�

E
(�)
� (8)

and similarly for other field and source components. This formulation
has the advantage that it has the same number of unknown split field
components as in Cartesian coordinates.

In the PSTD algorithm, the spatial derivatives are approximated by
an FFT algorithm. For 3-D cylindrical coordinates, the treatment ofz
derivative@=@z is exactly the same as in Cartesian coordinates [3]. For
the azimuthal derivative@=@�, it is easily obtained by FFT since there
is a natural periodicity in the� direction.
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The treatment of the� derivative is more complicated compared to
the Cartesian coordinates, simply because that the boundary at� = 0
is not an open boundary. One way of treating this is to use Chebyshev
pseudospectral method [6] which inevitably increases the number of
nodes at� = 0 and has a stringent stability criterion for�t. A more
efficient way is to form a new function for0 � j� � N�=2 � 1
(assumingN� is even) such that

g(j; j�)

=
f(�j � 1; j� +N�=2); for j = �N�; . . . ; �1

f(j; j�); for j = 0; . . . ; N� � 1
(9)

whereN� andN� are the number of cells in� and� directions, re-
spectively. Then the derivative is found by the FFT of theseN�=2 new
arrays of length2N�

@g

@�
� F�1� fik�F�[g]g (10)

whereF� andF�1� denote the forward and inverse FFTs, andk� is
the Fourier variable in� direction. The PML cells are placed near the
outer boundary� = �max to eliminate the waves coming from other
periods, i.e., to remove the wraparound effect due to the periodicity of
the distrete Fourier transform (DFT).

In contrast to Yee’s FDTD algorithm, the PSTD algorithm uses a
centered grid where all field components are located at the center of
each cell. As a result, no field components are actually located at� = 0.
Therefore, the first benefit of this PSTD algorithm is the removal of the
singularity at cylindrical axis that is present in the staggered Yee grid.

The second advantage of the cylindrical PSTD algorithm is that it al-
lows a much larger cell than the FDTD method for the same accuracy.
For the moderate-size problems shown here (typically�max � 30�),
the saving factor in the grid density (number of cells per wavelength)
from the FDTD method is roughly equal toK = 4. Thus, for a multi-
dimensional problem, the saving factor in computer memory isKD,
whereD is the dimensionality of the problem. Furthermore,K in-
creases with the problem size because for larger problems the required
sampling density in the FDTD method increases while that in the PSTD
algorithm remains the same. This advantage of the cylindrical PSTD al-
gorithm is the same as that in Cartesian coordinates.

The third and most important advantage of the cylindrical PSTD
method is the significantly reduced number of time steps because of the
increase cell size��. One undesirable property of a cylindrical grid is
the high concentration of cells near the axis. Around the axis the cells
have an azimuthal lengthh = ����=2 = ��max=N�N�. From the
stability condition, this requires that the time step�t / h, that is,
�t / 1=N�N�. Moreover, to satisfy the accuracy at� = �max, one
requires thatN� / N� to make the dispersion error in the azimuthal
direction comparable to other directions. Therefore, for a problem of
fixed size (i.e., fixed�max), in cylindrical coordinates, in general we
have to choose a time step size�t / 1=N2

� , one order smaller than
that required by a Cartesian grid of�t / 1=Nx. Hence, for large-scale
problems, if the PSTD has a cell size (��) that isK times that in the
FDTD, the FDTD requires roughlyK2 times more time steps than the
PSTD algorithm.

Therefore, if the geometry of a problem can be adequately repre-
sented by a coarse grid, as is the case in many large-scale problems
in geophysical applications, the PSTD method is more efficient than
the FDTD method. This is because the spatial derivatives in the PSTD
method have a higher order accuracy than the FDTD method. How-
ever, note that the time derivative has the same second-order accuracy
as in the FDTD method. As a result, for a required accuracy, even
though the spatial discretization of the PSTD method can be much
coarser, the temporal discretization�t should be about the same as in
the FDTD method for Cartesian coordinates (keeping in mind that the

Fig. 1. PSTD and analytical results for a magnetic line source in a 2-D
homogeneous medium. The inset magnifies the reflected wave from the PML
boundary.

FDTD method requires a much smaller�t in cylindrical coordinates
because of cell clustering, as discussed above). Therefore, if the geo-
metrical modeling requires a fine grid (for example,�� � �=10) to
avoid staircasing error, then the FDTD method is more efficient since
no FFT is needed and the time step size�t can be slightly larger [3].
Furthermore, the current PSTD method cannot treat a PEC scatterer be-
cause of the Gibbs’ phenomenon [3]. Research is underway to address
these two issues in the PSTD method.

III. N UMERICAL RESULTS

To avoid the Gibbs’ phenomenon associated with the delta func-
tion in a line (or point) source, here we treat the sources as a spatially
smoothed line or point sources [3]. We first model a smoothed mag-
netic line source in a 2-D free space in polar (�; �) coordinates. The
source has a Blackman–Harris window time function with center fre-
quencyfc = 300 MHz, and is located at�s = 5:1 m, �s = 90�.
The computational domain is meshed byN� �N� = 64� 128 cells
(including 10 cells of PML near� = �max) with �� = 0:2 m, and
�t = 10 ps. At the frequency2:5 fc, this discretization is about 2 cells
per wavelength. Fig. 1 shows the comparison of the PSTD results and
analytical solutions for a receiver at� = 3:1 m and� = 87:1875�.
The reflection error from the PML is below 0.1%.

For the PSTD code to solve this problem on an HP SPP-2000 Ex-
emplar (1 processor) it takes 890 seconds for the required 10 000 time
steps. For an acceptable accuracy, the FDTD method needsN��N� =
256 � 1024 cells, requiring 16 times more computer memory. In ad-
dition, a much smaller time step�t � 0:36 ps has to be chosen for
stability, requiring2:75� 105 time steps for the same problem.

We then simulate a smoothed magnetic point dipole source inside a
dielectric sphere of�r = 4 in a background with�r = 9. Note that this
object is not aligned with the coordinate directions in the vertical (z)
direction. The axisymmetric discretization isN� � Nz = 64 � 128,
with �� = �z = 0:044 m and�t = 20 ps. The PSTD results for the
ten received waveforms inside and outside the sphere are compared in
Fig. 2(b) against the reference FDTD results (N� �Nz = 320� 640,
�t = 4 ps). Excellent agreement is observed from Fig. 2(b) and (c) for
the second waveform. This confirms that even at this coarse grid close
to the Nyquist sampling rate, the PSTD algorithm produces accurate
results for inhomogeneous media. In contrast, the FDTD method takes
about 120 times more CPU time to solve this problem.

IV. CONCLUSION

The cylindrical pseudospectral time-domain method provides effi-
cient time-domain solutions for waves in cylindrical and polar coordi-
nates. As for Cartesian coordinates, the cylindrical PSTD algorithm
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(a)

(b)

(c)

Fig. 2. PSTD results for a smoothed magnetic point source in a dielectric
sphere. (a) Geometry. (b) The array waveforms. (c) The second waveform.

can save substantial amount of computer memory and computation
time because of its high accuracy in spatial derivatives achieved by the
FFT algorithm. Moreover, the additional advantages of PSTD in cylin-
drical coordinates include the removal of the singularity at the axis and
a substantial reduced number of required time steps compared to the
conventional FDTD algorithm.
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Statistics of Measured Body Loss for Mobile Phones

Jesper Ø. Nielsen, Gert F. Pedersen, Kim Olesen, and István Z. Kovács

Abstract—The variation in body loss for different users of a cellular
handset is investigated. Measurements involving 200 test users of mobile
communications (GSM) handsets have been performed and statistics are
presented for a handset with three types of antennas. Differences in the
body loss of up to 10 dB have been observed between users, thus indicating
that body loss measurements for handsets should include several test per-
sons. Depending on the antenna type, 8–13 test persons are required to ob-
tain an estimate of the mean body loss with a 1 dB confidence interval at
a 90% level.

Index Terms—Antenna performance, body loss, handset antennas, mo-
bile communication, radio propagation measurements, user influence.

I. INTRODUCTION

The overall performance of a cellular system is strongly dependent
on the amount of power transmitted and received by the handsets in the
system. To a large extent, the multipath propagation channel existing
between a base station and a handset determines the amount of received
power. However, the power is also depending on the type of receiving
antenna, the shape of the handset, etc. In addition, it is well known that
the transmitted or received power is reduced due to the presence of the
user, where the ratio of power with and without user is denoted the
body loss [1]. The body loss may vary significantly depending on the
antenna/handset design [2], [3]. Therefore, minimizing the body loss is
an obvious way of improving the performance of future handsets. It is
important, however, to note that the body loss may vary considerably
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