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Abstract 

We used an artificial neural network approach to 
predict salinity intrusion, a complex problem in 
the Sacramento-San Joaquin River delta in 
California. The inputs are comprised of the 
flows from the Sacramento and San Joaquin 
rivers, and stage data from different locations 
around the bay and delta region. Different neural 
network architectures and training algorithms 
were applied to this problem to find the optimal 
architecture to satisfy all possible scenarios. Out 
of all training algorithms, tested, the back 
propagation method using the Levenberg- 
Marquardt algorithm was the best predictor of 
salinity intrusion. 

The neural network was composed of three 
layers with the hidden layer of neurons 
consisting of three times the number of input 
neurons. Predicted salinities were within ten 
percent of the actual salinity at Carquinez strait 
(RSAC054) measured for two periods of time, 
*4pril 1997 and August 1998. Two selected 
management scenarios consisting of increased 
pumping at the federal and state water projects 
were evaluated to determine the resulting change 
in salinity at Carquinez strait. Increased 
pumping by fifty percent resulted in an increase 
in salinity of twenty percent. The speed with 
which these predictions can be evaluated indicate 
that a neural net.work approach could be used to 
evaluate a large number of potential management 
scenarios to determine their general effects on 
salinity intrusion into the delta. 
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1 Introduction 
The Sacramento-San Joaquh river delta is an 
integral part of California’s water supply 
network (Figure 1). Water projects divert water 
from the delta to meet the needs of 
approximately two-thirds of the state’s 
population. In addition to these exports, there 
are about 2000 local irrigation diversions located 
withm the delta. Most of the remaining water 
constitutes the final delta outflow into San 
Francisco Bay. Saline water from the bay is 
normally kept from intruding into the delta by 
these freshwater outflows. Saltwater intrusion 
into the delta is a major water quality problem 
that affects both wildlife and humans. 

The initial problem in managing salt-water 
intrusion is to evaluate the salinity at a given 
location in the delta at any point of time. 
Traditionally salinity is measured using 
monitoring instruments installed at various 
locations withm the bay-delta system. These 
data can be used to predict future conditions and 
evaluate the management alternatives: The 
California Department of Water Resources Delta 
Simulation Model (DWRDSM) [ I ]  is used for 
this type of analysis. DWRDSM [2,12] is an 
unsteady one-dimensional hydrodynamic and 
salt transport model. It can provide estimates of 
salinity at almost any location uithin the bay- 
delta system. However, like many numerical 
models, when simulating the dynamics a large 
complex system, the processing time can be 
extremely long which makes it difficult to 
evaluate a large number of management 
scenarios in a short time. Statistically based 
models of the flow and salinity have been tried 
and found lacking [ 151; classical time series 
analysis [I41 is often linear or requires 
transformation to a stationary time series which 
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renders the resulting model unsuitable, since the 
salinity intrusion problem is a complex non- 
linear problem. Consequently, there remains a 
need for a reliable and fast method to predict 
salinity in the Sacramento-San Joaquin river 
delta system. Our goal is to develop a tool for 
reliability and rapidly predicting salinity in the 
Sacramento-San Joaquin river delta system. Our 
criteria for reliability include prediction of 
salinity to an accuracy of f10% at hourly 
intervals for any time period in the year. 

Our specific objective is to predict the salinity 
and stage at Carquinez strait for hourly intervals. 
We selected the Carquinez strait because it lies at 
the western edge of Suisun bay and is generally 
near the location of biologically productive salt- 
Gesh water mixing zone. Also, monitoring data 
are available for Carquinez strait, which allows 
model development and testing. 

2 ANN development 

The success of the neural network [6,7,8,11,13] 
depends greatly on defining the influencing 
parameters for the problem. Figure 1 represents 
the outline of the bay-delta region and details of 
stations are provided in Appendix I. Hourly data 
for several locations were obtained from the 
Interagency Ecological Program. (Interagency 
ecological website http://www.iep.ca.gov)[S]. 
The data set consisted of 20 input variables and 
one output variable and the data represents 
hourly collected data for all variables around 20 
different locations in bay-delta. The size of the 
data matrix can be represented as 365x24 rows 
and 21 columns. Data used are from the years 
1996-1998. 1996 and 1997 are considered to be 
the training data set and 1998 constitutes the 
prediction data set. Flow values are given in 
cubic feet per second (cfs), Salinity is measured 
as electrical conductivity in micro mhos per 
centimeter (mmhos/cm), and stage in feet (ft). 
The meteorological variables like wind speed are 
expressed in d s e c  and barometric pressure as 
millibars. Any missing value for any variable in 
the data resulted in that hour's data being omitted 
from the data set. The input and output values 
are scaled to range [0.1 0.91, to insure that the 
output will lie in the output region of the 
nonlinear sigmoid transfer function. Presentable 
variable values lie in between 0.1 and 0.9 (0.1 
and 0.9 inclusive). 

3 Algorithm selection 

There are many kinds of neural networks are 
available for use. Nobody knows exactly how 
many. New ones (or at least variations of old 
ones) are invented every week. The critical issue 
in developing a neural network is generalization: 
How well will the network make predictions for 
cases that are not in the domain of the training 
set? Neural networks, like other flexible 
nonlinear estimation methods such as kernel 
regression and smoothing splines, can suffer 
from either underfitting or overfitting. A 
network that is not sufficiently complex can fail 
to detect fully the signal in a complicated data 
set, leading to underfitting. A network that is too 
complex may fit the noise, not just the signal, 
leading to overfitting. Overfitting is especially 
dangerous because it can easily lead to 
predictions that are far beyond the range of the 
training data with many of the common types of 
neural networks. Overfitting can also produce 
wild predictions in multilayer perceptrons even 
with noise-free data. The best way to avoid 
overfitting is to use lots of training data. If we 
have at least 30 times as many training cases as 
there are weights in the network, we are unlikely 
to suffer from much overfitting, although we 
may get some slight overfitting no matter how 
large the training set is. For noise-free data, 5 
times as many training cases as weights may be 
sufficient. But we can't arbitrarily reduce the 
number of weights for fear of underfitting. To 
overcome all the potential problems with 
overfitting and underfitting, we conducted seven 
different sets of analyses to establish the 
appropriate training algorithm, the best 
architecture, and select the best variables to 
include in the artificial neural network. 

The first analysis was used to determine the most 
efficient training algorithm for this type of 
problem. In the first analysis, we considered 
only the locations on the upstream side of the 
Carquinez strait (Figure 1) to evaluate the basic 
training algorithm required for the neural 
network. Fourteen different training algorithms 
were tested (Bayesian regulation, BFCGS Quasi- 
Newton, Conjugate gradient back propagation 
with Powell beale restarts, conjugate gradient, 
conjugate gradient with polka ribiere updates, 
gradient descent, Gradient descent with adaptive 
learning, Gradient descent with momentum back 
propagation, gradient descent with momentum 
and learning, Levenberg-marquardt back 
propagation, One step secant back propagation, 
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RPROP back propagation, scaled conjugate 
gradient, By weight and bias 1-vector at a time 
training function, and an elman recurrent neural 
network). Of the fourteen algorithms, the 
Levenberg-Marquardt back propagation [ 101 and 
Bayesian regulation back propagation [ 91 were 
the most efficient algorithms and resulted in the 
least amount of overfitting and underfitting. 
Some data points were under or over fitted in 
this experiment. To resolve the under or over 
fitting we further experimented using different 
data sets and architecture. 

In the initial analysis we considered the upstream 
data points for carquinez strait. Upstream data 
alone were not sufficient to calibrate efficiently 
the salinity intrusion analysis, which is caused 
partly by the tidal flux from the Pacific Ocean. 
We further enhanced the model with downstream 
inputs as well moon phase (lunar phase the 
causes tidal effect). The question here is to 
analyze which are all the key parameters, which 
contribute significant influence on salinity 
intrusion. 

4 Architecture and Variable selections 

The next steps were used to analyze the input 
variable selection and the network architecture 
based on the Levenberg-Marquardt and Bayesian 
regulation learning techniques. In the second 
analysis, tidal effect was introduced by adding 
the downstream locations. The major input of 
salinity is from ocean water transported into the 
delta by the tides. Minor amounts of salt are 
added and removed by agricultural activity 
within the delta. For example an average tidal 
flow through the Golden Gate is 2,300,OO cfs and 
the average delta outflow ranges from 600-32000 
cfs. In the second analysis, the Bayesian 
regulation back propagation technique did not 
reach the error of tolerance and it was eliminated 
in further analysis. 

In the third analysis some farther locations were 
eliminated and locations closer to the Carquinez 
strait were added. The Levenberg-Marquardt 
algorithm produced reasonably good results. 
Still some data points were undedover fitted. In 
the fourth analysis, we included meteorological 
variables like wind speed and barometric 
pressure from two location in the bay-delta 
region. Including meteorological data did not 
result in any reasonable improvements over the 
earlier analysis. Up to the fourth analysis, the 

neural network architecture considered was a 
three-layer neural network with equal number of 
input and hidden layer neurons. 

In the fifth analysis, we focused on the tidal flux 
towards the delta by incorporating the phase of 
the moon. Every day two high tides and two low 
tides occur in the San Francisco bay area. In this 
analysis the meteorological variables were 
omitted and instead the moon phase illumination 
is incorporated. The percent of the Moon's 
surface illuminated is a more refined quantitative 
description of the Moon's appearance than is the 
phase. This variable is used similarly to a bias 
variable in the neural network. The moon's 
surface illumination varies from full moon to 
new moon in a continuous manner throughout 
the year. This pattern is altered slightly once in 
19 years. The change in the moon's illumination 
in 19 years is very small compared to the 
prediction of salinity and it did not have an 
impact on the prediction of salinity. In the fifth 
analysis various neural network architectures 
were considered. We found that a three layer 
neural network with three hidden neurons for 
each input neuron produced excellent results. 
Flows and salinity were simulated well with very 
little overfitting or underfitting. 

The sixth analysis was a combination of the third 
and fifth analyses. In the sixth analysis, we 
further extended the parameters with various 
neural network architectures, which resulted in a 
reasonably good fit. The Levenberg algorithm 
did not increase the performance noticeably once 
the number of neurons in the network exceeded 
more than 100. The gradient descent algorithm 
[3,4] was generally very slow, because it requires 
small learning rates for stable learning. 
Networks are also sensitive to the number of 
hidden neurons in the hidden layer. Too few 
neurons can lead to under fitting. Too many 
neurons can contribute to over fitting, in which 
all training points are well fit, but the fitting 
curve takes wild oscillations between these 
points. In the final analysis, we did not increase 
the number of neurons beyond 100. 

In the final analysis, we considered pumping 
from the three major pumping stations located in 
the delta. This analysis focused on the impact of 
pumping and how the salinity intrudes into the 
delta region. These pumps remove water from 
the delta and send it south to the Central Valley 
of California and Los Angeles. A large volume 
of water is drawn out of the delta, which allows 
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the saltwater intrusion. When we included 
pumping volume as a variable, it produced an 
excellent result in predicting the salinity. 
Pumping has a high impact on the delta outflow, 
which pushes the saltwater further to the east in 
the delta. There are three major pumping s.tations 
located in the San Joaquin River in the delta, 
which draw a considerable amount of water (i.e. 
11328 cfs max. each pumping station). The 
input variables considered were the combination 
of variables used in the fifth analysis and the 
draw down from the three major pumping 
stations. The total number of input Variables 
considered for this experiment was 15 with one 
output variable (salinity). From previous 
analyses we concluded that a 3-layer neural 
network with 2 to 3 hidden layer neurons for 
each input neuron was sufficient to produce 
reasonable and acceptable results. Initially we 
tried with 2 times the number of hidden layer 
neurons as a 15-30-1 neural network 
archtecture. The results were excellent and 
closely followed the monitored pattern of real 
time data. We increased the number of neurons 
in the hidden layer and the results produced at 
some periods within the simulations were 
overfitted. Hence, we decided to use the 15-30-1 
architecture in the remaining analysis. 

5 ANN analysis 

We considered four scenarios to analyze the 
impact of pumping on the salinity at Carquinez 
Strait. The three prediction data sets for this 
experiment were from 1997 and the validation 
data set (Validation data set: A set of examples 
used only to assess the performance 
[generalization] of a fully-specified neural 
network.) was from 1998. Two data sets 
represent spring and the remaining two data sets 
represent middle of summer. The data sets 
represent the continuous time series. To study 
the impact of potential management options on 
salinity at Carquinez strait, the pumping rate at 
the federal and state projects was increased by 
50% for all four periods. The salinity at 
Carquinez Strait was predicted to increase from 
3 -2 0%. 

When the pumping is increased by 50% for the 
two input variables out of 15 input variables 
considered in training, occasionally the 
prediction of neural network results are under 
fitted. Under fitting is a result of data for some 
period that exceeds the range of values 
encountered during the neural network training 

(for example April 1997). Overall there is a 
possibility of increase of salinity up to 20% at 
Carquinez strait. The prediction for the above 
analysis is shown in (Figure 2). 

6 Discussion 

After experimenting with different scenarios, a 
three layer neural network with two hidden layer 
neurons for each input neuron with Levenberg- 
Marquardt algorithm was determined for this 
problem to be the best. 

Nicky et.al. [12] used daily data for the period 
1971-1991 in recurrent feed foryard neural 
network to model salinity intrusion. Any 
missing values in the data were filled with 
linearly interpolated data from the nearest 
available data values. When considering for the 
San Francisco bay delta, daily data were 
inappropriate. The two high and two low tides 
each day in the San Francisco bay delta system 
effects in the bay cannot be addressed clearly. 
The selection of one-hour data intervals will be 
able to simulate the problem much more 
effectively than daily intervals. One-hour data 
interval prediction of salinity will help the 
management authorities to regulate the pumping 
at state and federal pumping stations more 
efficiently, because pumping can be adjusted 
much more frequently and salinity can be 
managed niuch more efficiently. 

The data available for years prior to 1996 are of 
insufficient quality to test for long-term trends in 
salinity in the bay-delta region. Data are 
collected with different sampling frequencies. 
The data collection from different agencies 
should have a common time interval of 
collection throughout the year. Additionally, 
there are significant removals of water from the 
delta that are not monitored that could play a role 
in determining the salinity of the bay-delta 
system. Adequate predictions of salinity may 
depend on obtaining these data. However, 
overall the predictions of the neural network 
model were quite good and could be used as a 
real time method to explore different 
management options for the bay-delta system. 
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Appendix I 
Locations in Bay-Delta Region 

RSAC045 Selby (Wickland Oil Pier) 
SHWSFOO1 Central Bay at Presidio Fort 
Point 
RSAC054 Sacramento River at Martinez 
(Carquinez strait) 
RSAC064 Sacramento River at Port 
Chicago 
SLMZUOll Montezuma Slough at Beldons 
RCSM075 Consumnes River at Michigan 
Bar 
RSAC 1 01 Sacramento River at Rio Vista 
Bridge 
RSACl55 Sacramento River at Freeport 
CHGRL009 Grantline Canal at Tracy Blvd 
Bridge 
ROLD040 Old River at Clifton Court 
Ferry 
RSAN007 San Joaquin River at Antioch 
betweens lights 7 & 8 
RSANll2 San Joaquin River at Vemallis 
CHDMCOO6 Delta Mendota Canal at the 
head (beginning) of the concrete liner 
CHSWP003 State water project California 
at Harvey 0.Banks Delta Pumping Plant 
CHDMC004 CDEC TRD Delta Mendota 
Canal at Tracy Pumping plant 
CHCCC006 CCWD Pumping station, 
Contra Costa Canal at Pumping Plant 1 
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Figure 1. San Francisco Bay-Delta Region 
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