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How Sensitive Is Safe? Risk-Based Targets for
Ambient Monitoring of Pathogens
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Abstract—Biological agents present hazards at concentrations
far below those of concern for most chemical agents. Detecting such
low concentrations poses a great challenge to environmental mon-
itoring systems. This study proposed a framework to address the
questions of: 1) what level of risk would trigger the use of coun-
termeasures and 2) what environmental sampling rates would be
needed to detect the target risk level. In the first part, a decision
model is developed to assess the costs and benefits of prophylactic
antibiotic treatment for Yersinia pestis as a function of the risk of ill-
ness. A sensitivity analysis is then conducted to identify a threshold
level of risk at which medical treatment of exposed individuals
is justified. Risk levels of � � ��

� are estimated to be suffi-
cient to justify treatment. A dose-response function is developed to
map these risk levels to delivered doses to individuals. Estimates
are that an average dose of 1.8 organisms is sufficient to trigger
medical treatment for an exposed population. A range of human
breathing rates are used to estimate the environmental sampling
rates required to detect air-phase concentrations corresponding to
this dose over an 8-h exposure period. The environmental sampling
rates for Lassa virus are two orders of magnitude greater than for
Yersinia pestis, while those for Bacillus anthracis are an order of
magnitude lower. These sampling rates represent idealized goals
for the sensitivity of detector systems. By linking environmental
sampling rates to risk-based goals for detection, this paper pro-
vides a framework for optimizing sensing systems.

Index Terms—Dose response, microbial risk, pathogen, sensor.

I. INTRODUCTION

P ATHOGENIC microorganisms present risks at concentra-
tions far below those of concern for most chemical agents.

Developing a detector system that is sufficiently sensitive to de-
tect these concentrations is a challenge. As a practical neces-
sity, some level of environmental risk is considered acceptable.
While detector systems need not be infinitely sensitive, ideally
they would be capable of detecting the lowest level of risk att
which some response becomes warranted. One would like to
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detect the concentration corresponding to the risk at which one
would take some action, such as evacuating a public area or
treating exposed individuals with antibiotics.

This paper describes a three-step procedure for the design
of such an idealized detector system. First, decision analytic
methods are used to identify the lowest level of risk at which
a response is warranted. Second, a quantitative dose-response
function is used to estimate doses associated with this risk level.
In the third step, this dose is related to an environmental con-
centration, and sampling rates required to achieve this concen-
tration are estimated.

The framework proposed here builds upon previous work that
links infection risk to microbial concentrations [1]. This study
extends the existing work by: 1) identifying environmental sam-
pling rates needed to detect time-integrated concentrations of
concern; 2) considering beta-Poisson dose response functions
as well as the exponential dose-response functions addressed in
previous work [1]; and 3) including decision analytic methods
for the identification of an appropriate risk target for a sensor
system.

This framework is applied to plague as an example analysis.
Plague is an uncommon infectious disease of animals and hu-
mans caused by Yersinia pestis (Y. pestis) bacteria. Y. pestis is a
Gram-negative bacterium, which is present in wild rodents and
their fleas in many areas around the world, including most of
the western United States. Plague is one of the most threatening
and deadliest diseases in the world. It has been the cause of three
pandemics, and has led to the deaths of millions of people, the
devastation of cities and villages, and the collapse of govern-
ments and civilizations [2]. Small outbreaks of plague continue
to occur throughout the world, and at least 2000 cases of plague
are reported annually. At the present time, plague remains a se-
rious problem for international public health, and its risk has
been assessed using quantitative modeling approaches [3], [4].

Plague presents in three forms: bubonic, septicemic, and
pneumonic. Among the three forms of plague, pneumonic
plague is particularly dangerous, with an incubation period
of 3 to 5 days and a mortality rate approaching 100% unless
antibiotic treatment is initiated within 24 h of the onset of
symptoms [5].

Because of the fast progression and high mortality of
pneumonic plague, interest has been renewed recently in the
possible use of Y. pestis as a biological weapon by terrorists.
Y. pestis used in an aerosol attack could cause infection with
the pneumonic form of plague being manifested 1 to 6 days
after infection. Once people have the disease, the bacteria can
spread to others who have close contact with them. Because of
the delay between being exposed to the bacteria and becoming
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Fig. 1. Decision tree. � is the probability of illness after prophylaxis; � (underscored with shadow) is the probability of illness without prophylaxis, which is
the target risk to be identified; � and � are the probabilities of death of patients treated with second line antibiotic; � is the probability of side effects, and VSL
is the value of statistical life.

sick, people could travel over a large area before becoming
contagious and possibly infecting others. Controlling the dis-
ease would then be more difficult. A bioweapon carrying Y.
pestis is possible because the bacterium occurs in nature, and
could be isolated and grown in quantity in a laboratory. Even
so, manufacturing an effective weapon using Y. pestis would
require advanced knowledge and technology.

Currently, there is no available vaccine for plague in the U.S.
Antibiotics are the cornerstone of plague treatment. There are a
limited number of antibiotics with demonstrated efficacy for the
treatment of plague in human [5]. Gentamicin and tetracyclines
have been used with success [6]. For the treatment of pneumonic
plague, doxycycline, streptomycin, chloramphenicol, and the
tetracyclines have demonstrated efficacy [7].

The first step of this framework, the identification of a risk
level at which response is warranted, is a complex societal
choice. The second and third steps are relatively straightfor-
ward calculations. While space permits the first step to be
demonstrated for only a single pathogen, the second and third
steps are demonstrated for three potential bioterrorism agents
for which new quantitative dose-response information has
recently become available in the technical literature: Y. Pestis,
Lassa virus, and Bacillus anthracis (B. anthracis).

II. METHOD

A. Scenario and Decision Tree

The first step of the framework, identifying a risk level at
which response is warranted, was applied to a scenario in which
an individual has been exposed to a low level of aerosolized Y.
pestis. The exposure is sufficiently low that it is unlikely that the
individual will become ill even if not treated. Thus, it is not clear
that the expense and risk of side effects from treatment are jus-
tified. This scenario is represented by a decision tree with two

options: apply a first line antibiotic immediately as postexpo-
sure prophylaxis, or wait until symptoms are manifest at which
point one would apply a second line antibiotic. Fig. 1 shows this
decision tree. The box on the left-hand side of the diagram in-
dicates the decision to be made, the circles indicate uncertain
future events, and the branches indicate possible outcomes.

The top branch of the decision tree shows the immediate pos-
texposure prophylaxis option. The probability of illness (indi-
cated by ) is the probability that the exposure is sufficient to
cause illness multiplied by the probability that the first line
antibiotic fails to prevent the illness. The probability of the first
line antibiotic failing is estimated as 3% based on the literature
[8]. If the individual does become ill, the second line antibiotic
will be applied, which has 6% probability of failure [8].
Individuals not falling ill due to infection have a 5% chance of
experiencing a side effect due to antibiotic treatment (al-
lergic reactions, colitis, etc.).

In the other option, shown on the bottom branch of the de-
cision tree, the first line antibiotic is not applied initially. If the
exposed individual subsequently becomes ill, he or she will be
treated with the second line antibiotic. Thus, the second line an-
tibiotic is applied in both options if needed. If the individual
survives, potential side effects are also taken into consideration.

Doxycycline is selected as first line antibiotic. It is regarded
as the least toxic of the tetracyclines with a long serum half-life
( h), which reduces the frequency of administration. Doxy-
cycline has been widely used, and is well characterized with
regard to long periods of administration as a prophylactic an-
tibiotic and for treating atypical pneumonias [7]. Also, doxycy-
cline is inexpensive and can be given orally, making it the first
choice for mass postexposure prophylaxis. Gentamicin is attrac-
tive as an effective treatment because it is readily available and
can be used intravenously in a single daily dose. It is likely a
better choice for those patients in later stages of infection [6].
Therefore, gentamicin is used as a second line antibiotic in this
project.
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TABLE I
DATA REFERENCE CITED BY DECISION TREE

TABLE II
SUMMARY OF THE DOSE-RESPONSE DATA

B. Exponential Dose-Response Model for Y. Pestis Infection

The decision tree analysis described before identified the
threshold value of risk for antibiotic treatment. The next step
is to identify the human dose associated with this risk level.
Data from the animal dose response study of Speck and Wolo-
chow [13] are used as the basis for this estimate, because
this study used a host animal similar to humans (a primate
species), and the exposure pathway is the pathway of interest
here (inhalation). Speck and Wolochow exposed 2.2–4.9 kg
rhesus monkeys to an aerosol suspension of Y. pestis in a cloud
chamber outfitted with a Wells-type atomizer. Dose-response
data from the study are presented in Table II. The animal
subjects did not receive antibiotic treatment, and in such cases,
the risk of death and illness are approximately equal due to the
high mortality of untreated plague. However, the risk estimates
based on the animal mortality data are interpreted as predicting
illness for a human population that would receive antibiotic
treatment.

Exponential and beta-Poisson models, which are widely used
microbial dose-response functions [14], were evaluated for fit-
ting the dataset in Table II. The equations for exponential and
beta-Poisson models are shown as (1) and (2), respectively, as

(1)

(2)

where is dose, , and are parameters to be estimated
from the data. Maximum-likelihood estimation, (MLE) as de-
scribed by Haas et al. [14], was implemented in the R program-
ming language to fit these models to the dose-response data pre-
sented in Table II.

C. Environmental Detection

Ideally, a negative response from a sensor should indicate that
the risk is below levels where a response is warranted. Thus, the
detector must be capable of detecting environmental concentra-
tions that produce the dose (obtained according to Section II-B)
corresponding to the risk level at which action is warranted (es-
timated in Section II-A). In this study, it is assumed that an air
filtration device is used to concentrate the sample. The flow rate
of the concentration device must be sufficiently larger than the
human respiration rate that the detector is more likely to en-
counter sufficient numbers of pathogens to detect than the hu-
mans are likely to encounter sufficient numbers of pathogens
to become ill. Thus, in this conceptual study, a single design
parameter is consider, the sampler flow rate, Q. Example calcu-
lations were made for three pathogens: Y. Pestis, Lassa virus,
and B. anthracis using recently estimated quantitative dose-re-
sponse functions.

At low-dose range, a first-order Taylor series can be used to
approximate both the exponential and the beta-Poisson dose-
response functions [15].

For the exponential dose-response model

(3)

For the beta-Poisson dose-response model

(4)

where and are risk coefficients
in exponential and beta-Poisson model, and Dose refers to in-
halation dose, which is the integral of aerosol concentration (C),
fraction of viable organisms and breathing rate (Inh) over
sampling time

(5)

The number of pathogens captured by a sampling device is
the integral of the sampler flow rate (Q), the capture efficiency
(e), fraction of detectable organisms , and the aerosol con-
centration (C):

(6)

Linking (5) and (6) provides an estimate of human dose as a
function of number of pathogens detected

(7)

Substituting (3) and solving for the design parameter Q yields

(8)
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The efficiency at which the sampler collects pathogens is esti-
mated as 0.74 [16].

One method to estimate the required flow rate of the sampler
is to assume that the number of organisms must be equal to
the detection limit of whatever sensor is used to identify the
pathogen

(9)

where DL is the sensor detection limit and is the required
sampler flow rate estimated based on this process. In this study,
a value of 15 is used for DL based on estimates of the sensitivity
of PCR-based detection systems [1].

While the approach described earlier ensures that on average,
the pathogen will be detected at the risk level of concern, it does
not account for sampling variability, i.e., those situations due
to random variability, the number of organisms captured by the
detector is below the long-term average. A second method to
estimate the required flow rate of the sampler uses classical sta-
tistics to account for sampling variability. In this approach, the
pathogens are assumed to be randomly distributed in the air.
Thus, counts at the detector follow a Poisson distribution. The
probability of successfully identifying the pathogen is

(10)

If we assume that a negative result from the sampler must
demonstrate with 95% confidence that the pathogen concentra-
tion is below the risk level of concern, then one finds another
target value for , which is 22 organisms, based on a detection
level of 15. This higher value of can then be used with (7)
to estimate a required sampling rate, denoted by is
larger than and provides better protection, as it limits the
probability that sampling variability will result in failure to
detect the pathogen.

III. RESULTS AND DISCUSSION

A. Threshold of Risk

The expected values for prophylaxis and without prophylaxis
shown in Fig. 1 were compared to obtain the risk of infection

at which the expected values of the two options were equal.

(11)

(12)

(13)

Fig. 2. Best fit model for dose response of Yersinia pestis infection. �������
best fit model, �� � � � �� 95% confidence, �� � �� 99% confidence, and � �
dose-response data [13].

TABLE III
RISK LEVEL AND CORRESPONDING DOSE

Substituting the data in Table I into (12) and (13) yields a
threshold for risk equal to . At risks above
this level, the response (administering the first-line antibiotic) is
warranted for an expected value decision maker. At risks below
this level, no immediate action is preferred, and thus detection
by a sensor system would yield no benefit as it would not trigger
any response.

B. Threshold of Dose

Fig. 2 shows that the beta-Poisson dose-response model is
the best fit model for the set of pooled animal data (Table II)
with the optimal parameters . The

(the doses required to produce a lethal re-
sponse in 1%, 10%, or 50% of the subjects), and the critical
dose associated with the target risk were listed in Table III. The
sensitivity of the estimates on inclusion of different dose levels
was tested by excluding the highest or lowest dose (Table II)
from the analysis, and the resulting risk target dose estimates
within % range (data not shown) indicates no overly large
influence exerted by various dose levels.

C. Environmental Sampling Rate

Substituting the parameters obtained earlier for Y. pestis
and those from literature for Lassa virus and B. anthracis,
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TABLE IV
FLOW RATE BASED ON DIFFERENT PATHOGENS AND RISK LEVEL (� IN BOLD TYPE PROVIDES 95% CONFIDENCE THAT RISK TARGET IS ACHIEVED)

Table IV summarizes estimated flow rates required to detect
different pathogens and risk levels. In calculating these values,
we assume the following.

1) All organisms have the ability to launch an infection
process (conservative protection), and that the detector is
sensitive to all the pathogens captured, which leads
and to be 1.

2) Dose is calculated based on a human inhalation rate of 8
l/min, and the assumption that the sampling time is the
same as that of the human exposure time.

Based on the risk level of concern for Y. Pestis of ,
the sensor’s sampler should take in 81.5 l air per minute to detect
the average environmental concentration corresponding to this
risk level. The required sampling rate rises to 119 l/min if one
desires 95% confidence that the risk level of concern will be de-
tected. Table IV also provides estimated sensor flow rates based
on various risk level for two other pathogens with potential to
be used as bioterrorism agents, Lassa virus and B. anthracis.

These sampling rates assume that the sampling period and
the exposure period are identical. In reality, the exposure period
may be briefer (the individual moves out of the affected area
before the sampling is completed), in which case these sampling
rates would be conservative (health protective). If the sampler
is to be operated for a shorter time than the potential exposure
period, then greater sensitivity would be required. This appears
to argue for continuous sampling or longer sampling periods to
the extent feasible.

The estimated sampling rates are high, but might be attain-
able, especially with multiple samplers. It should also be noted
that these are the maximum sensitivity desired. Less sensitive
detectors may be very valuable in detecting larger releases.
These results may also inform the interpretation of sampling
results. For sensor systems that do not achieve these sampling
rates, some response may be warranted even when sampling
results are negative, if there is other evidence of a release, such
as a threat. However, the willingness of decision makers to
order costly response actions in the face of negative sampling
results may be problematic.

This analysis is intended primarily to outline a framework
for how sensor systems may be informed by risk assessment.
In particular, it shows how decision analytic approaches and
quantitative dose-response models may be used to inform en-
vironmental sampling rates. While quantitative dose-response

models for bioterrorism agents of concern are becoming avail-
able in the literature, applying these dose response models in-
volves two key assumptions. The first is that the model fit to
nonhuman animals can be applied to humans. The second is that
the high dose risks observed in the study can be extrapolated
to lower doses. The models used here have a mechanistic basis
that supports their use at low doses [19], [14]. Nevertheless, val-
idating these models at low doses is infeasible due to the large
number of animal test subjects that would be required. While
risk management decisions must often be made in the face of
challenges, such as those that cannot be feasibly resolved with
available scientific methods [20], the uncertainties introduced
by such assumptions should be acknowledged. Finally, one must
note that risk levels at which response actions are taken are not
informed solely by decision analytic studies such as this, but
also by public perceptions and preferences, which would need
to be taken into account in how a sensor system is designed and
how the results are interpreted.
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