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Abstract-In this article, we introduce an idea of 
using soft constraint to improve effectiveness of 
existing optimization methods for identifying 
unknown parameter zones for distributed 
parameter identification problems. The constraint 
is put on the projected size of each parameter zone. 
But the constraint is only softly imposed due to 
uncertainty consideration. Two identification 
procedures based on such a constrained 
optimization idea are described. Results on three 
examples are presented to illustrate the advantages 
of this new approach. 

I. INTRIDUCTION 

We have developed over the past several years 
procedures for identifying unknown parameters of 
distributed parameter systems (cf. [ 11, [2]). 
Applications of those methods to parameter 
identification for groundwater flow and solute transport 
can be found in a newly developed comprehensive 
package vPIMM, Visual Parameter Identification for 
MODFLOW and MT3DMS (cf. [3]). In this article, we 
introduce soft constraints in those optimization methods 
for identifying distributed parameters of groundwater 
systems. We first discretize the unknown parameter 
into a number of zones. But unlike existing zonation 
based identification schemes that require a priori 
information regarding the shape and/or even the 
complete configuration of all the parameter zones, we 
do not impose any one of such assumptions regarding 
parameter zones. Instead, we assume that all the 
different types of zones have been observed at least in 
one location for each zone type and that each parameter 
zone is connected to an observation site of the same 
zone type. We also assume that each parameter zone 
occupies roughly a certain percentage of the entire 
system domain or is roughly of certain kind of shape. It 
is not realistic to assume an exact percentage of the 
entire domain and an exact kind of shape for each zone. 
Thus we only impose soft constraints in parameter 
identification procedures. Our objective is to find a 
good parameter distribution that would generate 
basically the same observation data at the observation 
locations. 
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Even if the distributed parameters are discretized 
into a fairly small number of zone types, identification 
of such parameters usually leads to a large scale ill- 
conditioned optimization problem because zone shapes 
and boundaries are still unknown. We have observed in 
our tests of unconstrained parameter identification 
methods that significant disproportionality may occur 
among the sizes of identified zones (as evidenced in 
Figs. IC, lf, and 3c below). They could prevent the 
algorithms from escaping local minimum solutions 
without restarting. This disproportionality phenomenon 
occurs more often when the domain of the state variable 
of the distributed system becomes larger. We have been 
investigating effectiveness of using soft constraints on 
size and shape for improving the overall quality of the 
finaI solution. Soft constraints are enforced only up to 
a certain (prescribed) degree of tolerance. Preliminary 
results on soft size constraints are reported in this 
article. The identification algorithms will be described 
and hypothetical examples will be used for illustrating 
effectiveness of the proposed methods. 

II. PARAMETER ZONE IDENTIFICATION UNDER 
SO= SIZE CONSTRAINT 

A distributed parameter identification problem is 
defined in terms of a state simulation model, a choice of 
unknown parameters distributed over the spatial domain 
of the system, and specification of an objective function 
along with some state and parameter observation data. 
For the state simulation model, we consider a 2- 
dimensional steady state saturated groundwater flow 
equation 

4 4 4 

+ Q = O  (2.1) 
plus boundary conditions 

with the hydraulic conductivity K as the unknown 
spatially varying parameter that needs to be identified, 
and the hydraulic head h as the state of the system. A 
slightly different case would use the transmissivity T in 
the flow equation instead of the hydraulic conductivity 
K (cf. [4]). In (2.1), U = h(x, y) is the state variable, 0 
= K(x, y) or T(x, y) the unknown spatially varying 
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parameter to be identified. Observed data at observation 
locations can be denoted by uo for the states and 0, for 
the parameter values. Our parameter identification 
problem is to find a "best" estimate of o(x, y) given uo 
and 0,. To be more specific, we introduce a weighted 
output least squares error function 

f(0,) = 0.5 (uo - P (uo - us) 
+ 0.5(00-0s)T Q (0, - Os), (2.2) 

which is used to measure performance of the cwent 
estimate 9,. u,(x, y) is the simulated state under the 
parameter 0, using the state equation (2.1). P and Q 
are appropriate weighting matrices. Our state equation 
(2.1) is currently stated as a second order partial 
differential equation. We could have included 
additional time variable or another spatial variable z in 
the state model. Even other types of distributed 
systems could be considered. The identification 
problem is restated as an optimization problem. 

Minimize f(0,) subject to (2.1) 
and other possible constraints. 

Equation (2.1) along with the unknown parameter is 
discretized by the usual finite difference method. Since 
we are mainly concerned with large domains 
(especially three-dimensional ones) over which the 
parameter will be distributed, we need to make a couple 
of assumptions. 
(Al). Parameter zonation. The unknown parameters 

can take on a finite number of values. Each distinct 
value defines a zone type. We assume that all different 
types of parameter zones have been observed. 
(A2). Zone connection to an observation site. Every 

type of zone is connected to at least one observation site 
of the same type. Thus the number of parameter 
observation sites limits the total number of zones of the 
parameter distribution. 

However we impose no assumptions regarding zone 
boundary locations and shapes of zones. The current 
assumptions are reasonable from both theoretical and 
practical considerations as explained in [l]. 

At least five individual parameter identification 
methods were originally proposed in vPIMM [3]. They 
didn't take into account any soft constraints on zone 
sizes and shapes (that is, ZC = 0 in the examples 
below). The soft size constraint is considered below. A 
desirable size percentage (denoted by ZP in the figures) 
is specified along with a nominal tolerance for each 
zone type (10% is used in the examples). We now 
introduce two approaches to implement the soft size 
constraint. 

In the first approach (ZC = 1 in the examples), we 
simply introduce an additional step in the existing 
methods to modify proposed nominal unknown 

parameter configuration by trying to impose the soft 
size constraint before the trial configuration is 
evaluated by the objective function. Thus in the extra 
procedure, we take a trial solution that is already zoned. 
Check the size constraint and order the zone types 
according to the degree of size violations. For each 
violated zone type (starting from the one with the most 
violation) move portions of its zone boundary outward 
or inward depending on whether the current size is too 
small or too big. This is done for several cycles or until 
the soft size constraint is satisfied. 

In the second approach (ZC = 2 in the examples), we 
integrate one of the original zonation procedures (cf. 
[2]) with addition of a constraint on zone sizes. The 
zonation procedure has been one of the key components 
of our original parameter identification methods. Thus 
in this case, we take a trial solution that may not be 
zoned. As zones are being build up starting from the 
observation sites, size constraints are constantly 
checked. This is done for several cycles or until the 
entire domain is zoned. 

In order to compromise accuracy with efficiency, 
only a small number of cycles of internal soft size 
constraint loop are gone through in both approaches. 
Presumably no precise zone size information will be 
available anyway. There is rarely a need for complete 
enforcement of hard size constraints. Instead, we 
treated size constraints as soft ones. Consequently, it is 
possible that our final zone configurations may still 
violate the desired size constraints. 

In summary, there are at least three major features of 
our approaches: zone classification capability under 
fairly weak assumptions, no a priori assumptions 
regarding zone shape and zone configuration of 
unknown parameters, and control of degee of 
uncertainty of zone sizes. We use the soft size 
constraint as a mechanism for restricting the search 
domain and consequently improving effectiveness and 
1 iability of the overall parameter identification method. 

HI. TEST EXAMPLES 

To test performance of the new approaches, two 
versions of the simulated annealing algorithm have 
been applied to three examples, coupled with both soft 
size constraint strategies. They are indirect 
optimization methods, called ZMSAl and ZMSA2 in 
vPIMM. In all the test results, we run each optimization 
inethod for up to 30 seconds or until no improvemen1 in 
the best error. Repeat the process until no improvement 
in the best error in two consecutive runs. 

We consider a rectangular site with no- 
flow boundary conditions on the left and the right sides 
and constant head conditions at the top (h = 20 m) and 
{he bottom (h =10 m). It is a hypothetical site with the 
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true parameter distribution (use T for this example) 
illustrated in Fig. lb. We have discretized the spatial 
domain into 11x1 1 cells. Although the true global 
solution is shown in Fig. lb, such information is never 
used in the entire search process. We assume that the 
true T takes on four different values (say, 0.01, 0.40, 
1.50, and 5.00, in square meters per day), representing 
four significantly different types of the geological 
zones. The type indicators are shown in the figure. 
Observation locations are marked by the circles. Test 
results are shown in different parts of Fig. 1. Without 
the soft size constraint, very small zones have resulted 
as shown in Figs. IC and If. But they are undetectable 
from the objective function values alone. The results of 
the two constrained runs are clearly better with the 
second run slightly better than the first. 

This is also a hypothetical example of 
another rectangular site with no-flow boundary 
conditions on the top and along the right side, a 
constant head condition at the bottom (h =lo0 m), and a 
constant flow condition on the left side (Q = 0.25 d d ) .  
This time we use K for the unknown parameter with the 
true configuration illustrated in Fig. 2b. We assume that 
the true K takes on four different values (say, 5,  50, 
150, and 300, in meters per day), representing four 
types of zones again. We used 30x30 discretized cells. 
Test results for this example are shown in different 
parts of Fig. 2. The true zone sizes are more uniform for 
this example. Procedures without soft size constraint 
perform better than the same procedures applied to 
example 1. ZC = I still outperforms ZC = 0. ZC = 2 
leads to a quite different zone #l. But the objective 
function values are compatible. 

This is essentially the example 2 with 
the exact solution changed to the one shown in Fig. 3b. 
This is a more difficult problem with the true zone sizes 
being far from uniform. Test results for this example 
are shown in different parts of Fig. 3. Fig. 3c shows the 
worst. Procedures with soft size constraint options 
seem to offer better results. 

Based on the test results, a number of observations 
can be made. 

(1). The advantage of the new algorithm is more 
significant when the spatial domain of the system 
becomes larger or zone sizes are more nonuniform. 
(2). In terms of the number of function evaluations 

(although not shown explicitly), the soft size constraint 
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options are more efficient to reach a competitive level 
of objective function values. 
(3). One noticeable disadvantage of the new 

approaches is that it is more likely to stop improving 
the objective function value after reaching a fairly 
desirable level. However, this kind of behavior is more 
or less expected since restriction on the search domain 
will inevitably lose some searching power for capturing 
certain detailed features of the solution. But this effect 
is not completely negative. After a certain level, a 
smaller error does not necessarily imply a better 
solution because of imperfection in the quality and 
quantity of the observation data. 
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Fig. 1 a Initial solution of example 1 
with f9.734, ZP = (6.6, 13.2,71.9,8.3) 

Fig. lb True solution of example 1 
with f=O, ZP = (38.1 25.6 19.8 16.5) 

Fig. IC Final solution of example 1 by ZSAl Fig. If Final solution of example 1 by ZSA2 
f=.00243.ZP=(38.0.51.2,7.4. 3.3). ZC9 f=.004~16,ZP=(22.3,4.1,52.1,21.5). ZC9 

Fig. Id Final solution of example 1 by ZSAl Fig. 1I: Final solution of example 1 by ZSA2 
f=0.107,ZP=(35.5,25.62,23.1, 15.7), ZC=l f=.OO:245,ZP=(37.2,31.4,20.7, 10.7), ZC=l 

Fig. l e  Final solution of example 1 by ZSAl 
f=.OO818,ZP=(23.1,49.6, 16.5, 10.7), ZC=2 

Fig. 111 Final solution of example 1 by ZSA2 
f=.00122,ZP=(27.3,34.7,20.7, 17.4), ZC=2 
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Fig. 2a Initial solution of example 2 
f =53.01,ZF'= (16.0,27.6,32.7,23.8) 

Fig. 2c Final solution of example 2 by ZSAl 
f=0.678.ZP=(23.1,41.9,25.3, 9.7). ZC=O 

Fig. 2d Final solution of example 2 by ZSAl 
f=0.593,ZP=(21.0, 31. 8, 19.1, 28.1),ZC=l 

Fig. 2e Final solution of example 2 by ZSAl 
f=0.302,ZP=(21.2,34.3,23.2,21.2), ZC=2 

Fig. 2b True solution of example 2 
withf=O,ZP=(19.2,30.7,28.0,22.1) 

Fig. 2f Final solution of example 2 by ZSA2 
f=0.223.ZP=(25.3.35.8,22.8. 16.1). ZC=O 

Fig. 2g Final solution of example 2 by ZSA2 
f=0.127,ZP=(19.1,31.6,27.1,22.2),ZC=l 

Fig. 2h Final solution of example 2 by ZSA2 
f=.0414,ZP=(18. 8,34.7,32.2, 14.3),ZC=2 
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Fig. 3a Initial solution of example 3 
f =184.56,ZP= (34.7,23.6,14.0,27.8) 

Fig. 3b True solution of example 3 
with f = 0, ZP = (9.8 37.3 30.8 22.1) 

Fig. 3c Final solution of example 3 by ZSAl Fig. 3f Final solution of example 3 by ZSA2 
f=0.157.ZP=~8.3.56.4.0.001.35.1~, ZC=O f=0.228,ZP=(17.9,43.7,21.8, 16.7). ZC=0 

Fig. 3d Final solution of example 3 by ZSAl 
f=0.156, ==(lo. 9,38.4,29. 8,20.9), ZC=l 

Fig. 3g Final solution of example 3 by ZSA2 
f=0.3804,Zp=(lO. 6,40.0,29. 8, 19.7), ZC=l 

Fig. 3e Final solution of example 3 by ZSAl Fig. 3h Final solution of example 3 by ZSA2 
f=0.261,ZP=(10.3,40.0,29.4,20.2), ZC=2 f=O.O3M, ZP=(9.6,41.1,25.4,23.9),ZC=2 
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