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Abstract 

Spatial Joins are important and time consuming opera- 
tions in spatial database management systems. It is crucial 
to be able to accurately estimate the performance of these 
operations so that one can derive efJicient query execution 
plans, and even develop/rejine data structures to improve 
their performance. While estimation techniques for ana- 
lyzing the performance of other operations, such as range 
queries, on spatial data has come under scrutiny, the prob- 
lem of estimating selectivity for  spatial joins has been lit- 
tle explored. The limited forays into this area have used 
parametric techniques, which are largely restrictive on the 
data sets that they can be used for since they tend to make 
simplibing assumptions about the nature of the datasets to 
be joined. Sampling and histogram based techniques, on 
the other hand, are much less restrictive. However; there 
has been no prior attempt at understanding the accuracy of 
sampling techniques, or developing histogram based tech- 
niques to estimate the selectivity of spatial joins. Apart from 
extensively evaluating the accuracy of sampling techniques 
f o r  the very first time, this paper presents two novel his- 
togram based solutions for spatial join estimation. Using 
a wide spectrum of both real and synthetic datasets, it is 
shown that one of our proposed schemes, called Geometric 
Histograms (GH), can accurately quantify the selectivity of 
spatial joins. 

1. Introduction 

Spatial Database Management Systems (SDBMS) [22]  
need to provide a range of specialized and optimized spa- 
tial operations, such as spatial selection, nearest neighbor 
query and spatial join. Of these operations, spatial joins are 
particularly important because they are not only commonly 
used, but can also serve as building blocks for more com- 
plex spatial predicates. Spatial joins also present interesting 
challenges because of their high CPU and U 0  costs. 

A spatial join finds pairs of objects (from different 
datasets) that meet a given spatial predicate, such as in- 
tersection/overlap, containment, etc. For example, the 
query “find all the major highways in Pennsylvania that 
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cross a major river” can be answered by performing a spa- 
tial join on the highway and river datasets of Pennsyl- 
vania. In SDBMS, a spatial data abject is typically ab- 
stractedrepresented by its Minimum, Bounding Rectangle 
(MBR), which is the smallest axis-parallel rectangle that 
fully contains this spatial object. Using MBRs, spatial joins 
are performed in two steps [19]: the filter step and the re- 
finement step. The filter step retrieves all Minimum Bound- 
ing Rectangles (MBRs) that satisfy the given spatial predi- 
cate. The refinement step then examines the exact geometry 
of the pairs produced by the filter step to discard any false 
hits. Although the refinement step is an important issue, 
most prior research (as is this paper) has focused on the fil- 
ter step. 

A good deal of research [7,20, 13, 16, 31 has been done 
on optimizing the filter step of spatial join processing. How- 
ever, there is another important prohlem related to spatial 
joins: How do we predict the pelformance (selectivity in 
particular) of spatial joins? The spatial join selectivity of 
two datasets is the ratio of the resullant size of the spatial 
join to the size of the Cartesian product of both partici- 
pants. As m o s t  prior research, this  work considers only the 
filter step of the spatial join, and we thus deal only with 
two sets of axis-parallel rectangles (in a 2-D space). The 
spatial predicate for the join in this paper extracts pairs of 
intersecting MBRs from the two dalasets. Even with this 
simplication, accurately estimating the spatial join selectiv- 
ity poses problems because (a) data items are located in a 
multidimensional space (instead of a single dimension in 
the traditional RDBMS), and (b) size of the spatial objects 
can vary significantly. 

Selectivity estimation is crucial in a query optimizer for 
choosing a good execution plan for a given query. Selec- 
tivity estimates of spatial joins can lhemselves be used as 
responses to specialized user queries that are seeking ap- 
proximate figures. For instance, finding the approximate 
number of bridges in a given spatial extent may simply be 
satisfied by doing a join selectivity estimation between the 
streets and rivers datasets for that ex tent (and may not ne- 
cessitate performing the actual join). Finally, spatial join 
selectivity can also be used for evaluating the correlation 
between datasets [SI. 

The utility of selectivity estimation for spatial operations 
is widely recognized [22]. While there have been a large 
number of forays into this topic in the context of range 
queries [15, 24, 5 ,  27, 26, 141, the problem of selectivity 
estimation for spatial joins has been little explored. There 
are two prior studies, [12] and [25] ,  that have extended 
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prior analytical models for range query costs, to estimate 
the VO performance of joins using R-trees. To our knowl- 
edge, there have been very few attempts [2, 6, 81 at selec- 
tivity estimation for spatial joins. Taking one dataset as the 
source of query windows, and the other as the underlying 
data, [2] simply applies the technique proposed in [15] for 
range query estimation, and sums these results to get a con- 
venient closed form formula. Alternatively, [6] uses fractal 
concepts to estimate the selectivity of spatial self-join for 
point datasets. Along the same line, [8] uses a power law 
to model the distribution of pair-wise distance between two 
real multidimensional point datasets. Using this law, a fairly 
accurate selectivity estimation is derived for the spatial join 
of two point datasets. 

Selectivity estimation techniques can be broadly cate- 
gorized into three classes: parametric, sampling and his- 
tograms. Parametric techniques typically make some as- 
sumptions about the dataset to present convenient closed- 
form formulae for estimation, at little cost. For instance, 
[2] assumes that the data items are uniformly distributed in 
the two datasets to be joined, while [6] and [8] assume that 
the data items exhibit fractal behavior or obey a power law 
respectively. However, these assumptions restrict their ap- 
plicability since real datasets may not necessarily adhere to 
such properties. Further, [6] and [8] can work only with 
point datasets. The other two classes of estimation tech- 
niques, sampling and histogram-based, try to draw suffi- 
cient information from the given dataset to predict query se- 
lectivity. As a result, they are applicable to a larger class of 
datasets than their parametric counterparts. Sampling tech- 
niques actually perform the query on a much smaller ver- 
sion of the dataset, called the sample , and use the results to 
project the selectivity on the entire dataset. 

The difficulty in picking a representative sample with 
low overheads makes sampling somewhat undesirable. 
Histogram-based techniques, on the other hand, keep cer- 
tain information for different regions of the spatial extent in 
an auxiliary data structure (histograms), and quickly consult 
this structure to find the selectivity when the query is given. 
The trick with histograms is in finding out what informa- 
tion to maintain and at what granularity, so that duplication 
across buckets of the histogram or the lack of information 
within each bucket does not significantly impact accuracy. 

This paper intends to fill a crucial void in selectivity es- 
timation of spatial joins by proposing and evaluating differ- 
ent sampling and histogram based techniques. While sam- 
pling techniques [ 10, 11, 41 have been used in estimation 
for conventional databases, less effort has been spent to in- 
vestigate their usability in SDBMS: [18] dealt with tech- 
niques for obtaining random sample points of the query re- 
sults and [28] intended to obtain approximate answers of 
aggregate queries using random sampling algorithms. This 
paper, on the other hand, studies three well-known sampling 
techniques to estimate the selectivity of spatial joins. In ad- 
dition, two novel histogram based techniques are proposed. 
Using a diverse spectrum of real and synthetic datasets, that 
exhibit wide spatial distributions/patterns, these techniques 
are examined in terms of the estimation error and the esti- 
mation costs (both time and space), compared to performing 
the actual join. 

It is shown that in most cases, picking samples randomly, 
with a sample size of 510% of the dataset, gives less than 
10% errors at a overhead that is around 10% of the join 
time when the R-trees for the two datasets are not available. 

However, this is not a worthwhile option if the R-trees are 
available since the join itself is not as expensive. One of 
the undesirable properties of sampling is that the results are 
unstable i.e. it is highly dataset and sample dependent, and 
it is difficult to draw concrete conclusions. 

On the other hand, one of the histogram based tech- 
niques that we propose in this paper, called the Geometric 
Histogram (GH) scheme, is shown to bring errors down to 
less than 5% with little overheads. This scheme uses exten- 
sive adjustments within and across buckets to avoid multi- 
ple and/or false counting of pairs in the join estimation. It 
is shown that both of our proposed histogram schemes can 
give much more accurate (and stable) results than the only 
known prior parametric technique for join selectivity esti- 
mation that has been discussed in [2]. 

The rest of the paper proceeds as follows. Sections 2 and 
3 present the sampling and histogram based techniques for 
estimating spatial join selectivity. These techniques are then 
experimentally compared in section 4 using a wide range of 
datasets. Finally, Section 5 summarizes the contributions of 
this paper, and offers suggestions for future work. 

2. Sampling Techniques 

While sampling techniques have been used [ 10, 11, 41 
to estimate the selectivity of equi-join, which is the coun- 
terpart of the spatial join in the relational DBMS, there has 
been few prior investigation, to our knowledge, of the ap- 
plicability of these techniques to spatial data. In this study, 
we pick samples from both input datasets to be joined, and 
an R-tree [9] is then constructed for each of these samples. 
While one could try to directly perform a plane sweep al- 
gorithm [21] on the two samples, we have found that con- 
structing an R-tree for the samples, then performing an R- 
tree join [7] is a better alternative, since even a small per- 
centage of the datasets (which can be large) can result in a 
large number of data items to be joined. Suppose the sample 
sizes are a% and 0% of the the original datasets respec- 
tively, the estimated join selectivity is given by *%, 
where R is the selectivity of the join on the samples. We 
consider the following three techniques to pick samples 
from the two datasets: 

1. Regular Sampling (RS): If the sample size is n and 
the dataset size is N ,  RS generates a sample by taking 
every kth data item ( k  = [$I). 

2. Random Sampling With Replacement (RSWR): Every 
data item of the given dataset has an equal probability 
of being selected, with a chosen data item potentially 
being picked more than once. 

3. Sorted Sampling (SS): This follows the same proce- 
dure as RS, except that the input dataset is first sorted 
based on the Hilbert values [ 151 of the data items. 

3. Histogram Based Techniques 

The following subsections present two histogram based 
techniques to estimate spatial join selectivity. The common 
theme between these techniques is that an auxiliary data 
structure, histogram file, is constructed from the original 
dataset beforehand. The spatial extent is first gridded into 
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equi-sized cells with a number of vertical (ah)  and horizon- 
tal (2*) lines, where h denotes the level of gridding. The 
histogram file stores the necessary information for each of 
the resulting 4h cells. Later, when estimating a spatial join 
selectivity, these files for the two datasets (to be joined) are 
consulted. The following techniques differ in what infor- 
mation is kept in each cell. 

3.1. Parametric Histogram (PH) Scheme 

Parameters 

AvgSpanE 

In this subsection, we first describe one prior parametric 
scheme- [2], and see how it estimates the spatial join 
selectivity. A simple and straightforward extension is then 
proposed to overcome its shortcoming. 

3.1.1. Prior Approach. Assuming that both range queries 
and data are uniformly distributed over the entire spatial 
extent, Kame1 and Faloutsos [ 151 developed an analytical 
formula to evaluate the average response time for a range 
query. This was later extended to estimate the selectivity 
of spatial joins [2]. The basic idea is to consider one data 
set as the underlying database and the other as a source for 
query windows. The sum of the estimated range query se- 
lectivities would then give an estimation of the spatial join 
selectivity. 

Suppose we have the following parameters for dataset 
Dsk:  

1 Descnption I 
average number of cells spanned by MBRs 
mannine cell boundanes I 

e 
e 
e 

1 

0 

A: the area of the entire given spatial extent. 
Nk: the number of all data items in the dataset Dsk . 
c k :  the data coverage, i.e. the ratio of the sum of the 
areas of each data item in the dataset Dsk to A. 

e W k :  the average width of all data items in the dataset 
Dsk .  

e Hk: the average height of all data items in the dataset 
Dsk .  

tension (PH). While 
the parametric tech- 

.-U21 .__I  : 0 ;  nique discussed in [2] 

- _ _ _ _ _  i _ _ _ _  b3 1 and space overheads 

0' :a3---1____ 8 ing Equation l), the 
-bl --!--J5 Mi underlying assumption 

is that the data items are 
n6 a5 a4 uniformly distributed 

.......................................... 

a2 I incurs negligible time 

..[...i...i........-...-..i--l....... . (only requires comput- 

h 

Then, the selectivity of the spatial join between datasets 
DS1 and DS2 is estimated in [2] as: 

Sirel-2 = N I  x Cz + C1 x N z  + N I  x Nz 

(1) 
Wi x Hz + Wz x Hi 

A 

Selectivit y1-2 

area ot a cell. Areacell  

Table 1. PH parameters 

Table 1 summarizes the parameters that are used to im- 
plement the PH technique for a given dataset Dsk .  Note 
that except for the first two (which are for the entire dataset), 
the other parameters are maintained for each cell. The esti- 
mation for the above four cases ( S a ,  SI,, Sc, Sd) can then be 
calculated using these parameters as follows (directly drawn 
from Equation 1): 

Sa(i,j) = N u m l ( i , j )  x C o v z ( i . j )  + C o u l ( i , j )  x N u m z ( i , j )  + 
N u m i ( i , j )  x N u m z ( i , j )  x 
X a v g l ( i , j )  x Y a v g Z ( i , j )  + Yarugl ( i , j )  x X a v g z ( i , j )  

Areacell 
S b ( i , j )  = N u m l ( i , j )  x C o v ; ( i , j )  + C o v l ( i , j )  x N u m ; ( i , j )  + 

Numl(i , j )  x ~ u m i ( i , j )  x 
X a u g l ( i , j )  x Y a u g ; ( i , j )  + Y a u g i ( i , j )  x X a v g ; ( i , j )  

Area,.rr 

S c ( i , j )  = N u m ; ( i , j )  x C o v z ( i , j )  + C o v i ( i , j )  x N u m z ( i , j )  + 
N u m i ( i , j )  x NumZ(i,j) x 

X a v g ; ( i , j )  x Y a v g z ( i , j )  + Y a v g ; ( i , j )  x X a v g z ( i , j )  

Area,.rr 

370 



The basic idea behind these formulations is to break up 
rectangles spanning multiple cells into smaller ones (at cell 
boundaries), and handle the resulting rectangles in their ap- 
propriate cells. Of the above four cases, only Sd(i, j )  may 
cause multiple counting when we sum up the values from 
all the cells (only this case deals with rectangles that inter- 
sect in multiple cells). To adjust for this multiple count- 
ing, we can divide &(i, j )  by the mean of AvgSpanl and 
AvgSpanz i.e. the number of cells in which a rectangle in 
one dataset is likely to intersect with one rectangle in the 
other dataset. It should be noted that this is only an approx- 
imation to lessen the impact of multiple counting of inter- 
sections, and is not exact. Finally, PH uses the following 
formula to estimate the required spatial join selectivity. 

3.2. Geometric HistogramtGH) Scheme 

CASE1 CAS!?, CASE3 

I _ _ _ .  

CASE5 CASE6 CASE7 

CASE0 CASE10 CASE11 " 0  CASE 12 . . - -. -. . 

This is a completely 
novel approach to 
spatial join selectiv- 
ity estimation that is 
proposed in this paper. 
From Figure 2, one can 
observe that whenever 
two MBRs (rectangles) 
intersect with each 
other. the intersection 
is always another 

Figure 2. Intersections rectangle with four 
of Two Rectangles comers (let us call them 

intersecting points). 
Each intersecting point 

could be the result of one of the following two situations: 
(a) A corner point of one MBR falls inside another MBR 
(in Figure2, there are two such points in cases 1 through 4, 
two points in cases 7 through 10, and four points in cases 
11 through 12); (b).A horizontal line of one MBR intersects 
with a vertical line of another MBR (in Figure2, there are 
two such points in cases 1 through 4, four points in cases 
5 through 6, and two points in cases 7 through IO). If we 
can accurately estimate how many intersecting points exist 
between the two datasets, simply dividing this estimate by 
four will provide us the desired spatial join selectivity. To 
estimate the number of intersecting points between the two 
datasets, we propose a novel approach called the Geometric 
Histogram (GH) Scheme. 

3.2.1. Basic GH. GH builds a histogram file for each dataset 
by gridding the spatial extent into cells (buckets) as dis- 
cussed for PH. For an intuitive explanation of how GH 

Figure 3. Example for Basic GH 

works, let us say we record the following information for 
each grid cell (i, j): (a) how many vertical edges of MBRs 
pass through it ( V k ( i , j ) ) ;  (b) how many horizontal edges 
of MBRs pass through it (Hk( i , j ) ) ;  (b) how many MBRs 
intersect it ( I k ( i , j ) ) ;  and (c) how many corner points of 
MBRs lie inside it (Ck(z , j ) ) .  

Then an estimate for the number of intersection points 
between datasets a and b can be made as follows: 

One can better understand this equation by examining 
the 16 cases of intersection in Figure 2 assuming that the 
gridding is done to such a fine granularity that the inter- 
secting points between the two MBRs fall in different grid 
cells. In all these 16 cases, the above equation will correctly 
estimate four intersecting points (the first two terms calcu- 
late intersecting points corresponding to the sides of the two 
MBRs crossing each other, and the last two terms calculate 
intersecting points corresponding to a corner of one MBR 
falling within the other MBR). As an example, using equa- 
tion 4, the number of intersecting points over the four grid 
cells that is shown in Figure 3 for MBRs a and b can be 
calculated to be 4. 

We then divide the number of intersecting points by 4 to 
get the desired spatial join selectivity (1 in this case). 

3.2.2. Revised GH. Equation 4 is based on the assumption 
that within a given cell, (a) every corner of the MBRs of 
one dataset falls inside all the MBRs of the other dataset 
which intersect this cell; and (b) every horizontal edge of 
the MBRs of one dataset intersecting this cell will intersect 
all the vertical edges of the MBRs of the other dataset inter- 
secting this cell. 

, .  , . .  I ; ; ; !  
*bt.NonM*. I' --:o -m-"B:,l -W"L..d 

False Counting Multiple Counting 

Figure 4. Inaccuracies in Basic GH 

This can lead to errors that are illustrated in Figure 4 
due to the granularity of gridding. As we go for a very 
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fine level of gridding, these errors would diminish, mak- 
ing the basic GH scheme more accurate. This is illustrated 
in Figure 4 which shows that the inaccuracies go away with 
a higher level of gridding. However, with a high level of 
gridding (number of grid cells grows exponentially), comes 
the high storage and processing costs, making it impracti- 
cal. Instead, we propose to fix these inaccuracies by refin- 
ing the basic GH scheme (with little additional overhead) as 
discussed below. The refinement is based on the assumption 
that data items are more or less uniformly distributed within 
each grid cell. 

To facilitate our discussion, we use the notations in Ta- 
ble 2 representing the information GH will be needing for 
dataset DSk in each grid cell (i, j). 

Parameters 

ck (i, j) 
A ,I ;, 

Description 
number of comer points 
that fall within cell (i, j). 
sum of the ratios of the intersection area 

}* (with cc 

vk(i, j) sum of the ratios of vertical intersec! 
(with cell ( i ,  j)) of MBRs to the cell height I 

Table 2. GH Parameters 

Suppose we want to estimate the selectivity of spatial 
join between dataset DS1 and DS2. 

We will use 
MBRs a and b 
shown in Figure 
5, which are from 
DS1 and DS2 
respectively, to ex- 
plain the basic idea 
of our approach 
when the estimation 
is done for the cell 
with width CW and 
height CH.  The 
estimation of the 
intersecting points 
within a given cell 
is done as follows: 

Figure 5. GH Adjustment 
for Corner Intersection 
Points 

0 Estimating corner intersecting points (such as P-a 
falling within b in Figure 5): 
The shaded area 1-b represents the intersection of 
MBR b with the given cell, with the width and height 
of I - b  being hb and vb respectively. Following the uni- 
form distribution assumption, the probability of P a  
falling in I-b is given by the ratio of the area of I-b 
(shaded area) to the area of the underlying cell, i.e. 
c$Gx,v,", . If DS1 has N corner points inside this cell, 
statistically N x fi of these points are likely 
to intersect 1-b. Similarly estimating the intersections 
with the other MBRs of DS2, gives O ~ ( i , j )  x C~,(z, j )  
intersecting corner points of DS1. Symmetrically 
there are O1 (i, j )  x Cz(i, j )  intersecting corner points 
of DSz.  Summing these two gives the total number of 
corner intersecting points in cell (i, j). 

0 Estimating vertical and horizontal line intersection: 

The probability that a vertical line of size v intersects 
with a horizontal line of size h inside a 2-dimensional 
space of CW x CH,  is given by &. The 
reader is referred to [ l ]  for a proof of this observa- 
tion. Adding this probability for all the vertical lines 
of DS1 and horizontal lines of 13S2, we are likely to 
have Hz(1,j) x V~(i,j) such intersecting points. In- 
tuitively, we can get to this reasoning by going back to 
Equation 1 which estimates the number of intersecting 
rectangles in a 2-D space. If we simply set the areas 
Cl and C2 to zero, since we are dlealing here with lines 
instead of rectangles, equation 1 degenerates to the for- 
mula used here. Symmetrically, we are likely to have 
H1 (i, j )  x V2 (i, j )  horizontal lints of DS1 intersecting 
with vertical lines of DS2 in cell (i, j ) .  

Putting these arguments together, we estimate the num- 
ber of intersecting points (1P)using the following equation: 

I P  = C(Cl(i,j) x O Z ( i , j )  + C Z ( i , j )  x Ol(2 , j )  + f f l ( i , j )  

X V Z ( i , j )  + H Z ( i , j )  x Vl(i , j ) )  (5)  

This number is then divided by 4 to get the desired se- 
lectivity estimation. 

4. Evaluating the analysis teclhniques 

In this section, we evaluate the accuracy and costs of the 
different sampling and histogram based techniques in esti- 
mating spatial join selectivity. 

4.1. Datasets 

To stress the pros and cons of Ihe different schemes 
and their universal applicability, w e  have considered a 
wide spectrum of real and synthetic datasets. The selected 
datasets are quite diverse, and include both uniform and 
skewed spatial distributions. While the real datasets con- 
tain points, polylines and polygons, these are abstracted by 
their bounding boxes (MBRs) in our experiments, and the 
spatial join predicate is to find intersecting MBRs across 
the two datasets. Due to space limitations, we are not able 
to present the results for all the datasets. The reader is ref- 
fered to [ 11 for further information. In this paper, we present 
results for (a) TS with TCB: data of Iowa, Kansas, Mis- 
souri and Nebraska taken from the TIGE€ULine(R) datasets 
[17] where TS contains the MBRs of 194,971 streams 
(polylines) and TCB contains the MBRs of 556,696 cen- 
sus blocks(po1ygons); (b) CAS with CAR: data of Cali- 
fornia taken from [17] where CAS contains the MBRs of 
98,451 streams (polylines) and CAR contains 2,249,727 
roads (polylines); (c) SP with SPG: data taken from the 
Sequoia benchmark [23] where SE' contains the MBRs 
of 62,555 points and SPG contains 79,607 polygons; (d) 
SCRC with SURA: data synthetically generated in a 1 x 1 
space where SCRC contains 100,000 rectangles clustered 
around (0.4,0.7) and SURA contains 100,000 rectangles 
uniformly distributed. 

Using these datasets we consider (different combinations 
of spatial joins that capture interesting and diverse facets: 
joins between datasets of different lypes such as TS with 

372 



(a) TS with TCB (b) CAS with CAR (c) SP with SPG 

Figure 6. Sampling Techniques Results 

(d) SCRC with SURA 

TCB (polylines with polygons), joins between datasets of 
the same number of data items, joins between datasets of 
unequal cardinalities, joins between datasets with different 
spatial skews, and joins between datasets with similar spa- 
tial skews. 

4.2. Metrics of interest 

To evaluate the pros and cons of the different techniques, 

Estimation Error,  which is the difference between that 
predicted by the techniques and the actual join selec- 
tivity normalized as a percentage with respect to the 
actual join selectivity. 
Estimation Time, which is the time to conduct the es- 
timation relative to the time to perform the actual join 
using R-tree indices for the datasets 
Space Cost, which is the overhead in bytes for storing 
the required information for each technique, expressed 
as a percentage of the space required to maintain the 
R-trees for the actual datasets. 
Building Time, which is the time taken to con- 
struct the necessary information (histogram file for the 
histogram-based schemes, and samples for the sam- 
pling schemes), expressed as a percentage of the time 
taken to build the R-trees for the actual datasets. 

A low estimation error and estimation time will be pre- 
ferred. While building time is important if the target of 
the estimation is intermediary result(s) of a complex query, 
space cost is less important given the large amount of stor- 
age availability these days (as long as the storage require- 
ments do not become comparable or exceed the dataset size 
itself). The statistics on the actual join of these datasets, 
together with the details on their R-trees can be found in 

we consider the following metrics: 

[I]. 

4.3. Results for sampling techniques 

Figure 6 shows the results for the estimation of the spa- 
tial join selectivity with the various sampling schemes. All 
the bar graphs in these figures follow the same convention. 

IoOX 

10% 

1% 

1.1% 

lm* 

10% 

I% 

imx 

w, 
w, 

10% 

The x-axis represents different sample size combinations. 
The first three sets of bars in these figures use samples (of 
sizes 0.1 %, 1 % and 10% of the datasets) from both datasets 
for the estimation. The fourth to ninth sets of bars use a 
sample from only one of the datasets, with the entire other 
dataset (shown as 100) being used. The individual bars 
within each set show the performance for the three sampling 
techniques discussed in Section 2. 

All these graphs show the estimation error as defined 
in the previous subsection. The time cost is shown in two 
forms: Est. Time I is the time overhead in selecting sam- 
ples, building the R-trees from the samples and then per- 
forming the join, as a percentage of the time to do the actual 
join assuming the R-trees on the datasets are not available 
(i.e. they are built before the join is performed); and Est. 
Time 2 is the same overhead assuming that R-trees are avail- 
able, in which case the R-trees need not to be constructed 
for the original datasets. Obviously, Est. Time 1 is lower (as 
a relative percentage) compared to Est. Time 2. The space 
overheads are not explicitly shown here since they are ap- 
parent from the size (in percentage) of the samples that are 
chosen. 

One can intuitively hypothesize that larger the sample, 
the more accurate the estimation. While this is an overall 
trend, we do find exceptions in some cases (such as RS for 
CAS with CAR when we go from 1/1 to 10/10, etc.). This is 
because the sampling idea is based on statistical arguments, 
and it is impossible to definitely say that a larger sample 
will necessarily give a more accurate estimate. However, it 
is fairly obvious from the graphs that larger samples incur 
higher time and space costs. 

We find in Figure 6 that using all of one dataset and 
picking samples from only the other dataset does not pay 
off. The accuracy of this approach is not significantly better 
than picking a 10% sample from both datasets, and is in fact 
worse in many cases. Further, the time overheads are much 
worse than taking samples from both datasets if the R-trees 
on the two datasets are not available. 

The other important consideration is the impact of the 
dataset size (or rather, the difference between the sizes of 
the two inputs to be joined) on the effectiveness of sam- 
pling. In general, we find that taking a smaller fraction from 
the larger dataset results in better estimation accuracy than 
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taking the same fraction from the smaller dataset. This re- 
sults in a much better statistical approximation of the two 
datasets. This also makes sense from the time cost view- 
point, since a larger fraction of the larger dataset incurs 
higher estimation overhead. 

Between the three ways of picking samples, we find that 
Sorted Sampling (SS) is a poor choice. While its accuracy is 
not significantly better than the other two (in fact, it is worse 
in some cases), the sorting significantly adds to the time 
costs compared to the other two strategies. Regular (RS) 
and Random (RSWR) are more or less comparable, partic- 
ularly for the synthetic datasets, where the data items are 
anyway generated randomly. With the real datasets, their 
relative performance really depends on the vagaries of the 
dataset (RSWR does better in two cases, and is comparable 
in the third). Hence, it is suggested that samples be gener- 
ated randomly (RSWR) from the datasets. 

In general, we find that if the R-trees are not available 
for the datasets, we can get the estimation error within 
10% with sample sizes of 10% (i.e. 10/10), with time 
overheads that are also within 10% for random sampling 
(RSWR). This suggests that random sampling may be a 
viable option for spatial join estimation for intermediate 
stepshesults (where the dataset is not previously available) 
of a longkomplex query execution. When the R-trees are 
already available for the datasets, the results show that the 
estimation time costs (Est. Time 2) are much higher to get 
reasonable accuracy. However, one could argue that if R- 
trees are already available, then the samples for a dataset 
(and the R-trees on these samples) could also be made avail- 
able beforehand. As shown in [l], with the availability of 
the R-trees on the samples, RSWR becomes once again a 
possible option with the estimation time cost being less than 
10%. 

4.4. Results for histogram based techniques 

We next consider the two histogram-based techniques 
proposed in this paper. In figure 7, which shows the per- 
formance of the PH and GH schemes, the x-axis depicts the 
level of gridding (h, where 4h is the resulting number of 
grid cells into which the spatial extent is histogrammed). 
The results are then shown in terms of the estimation er- 
ror, estimation time, building time (for constructing the his- 
tograms), and the space overhead that have been described 
earlier. 

I.."d 

(d) SCRC with SURA 

We focus first on the results for PH. It should be noted 
that the PH results for h = 0 (the left most point in the 
curves) denotes the parametric model that has been origi- 
nally proposed in [2], where the universe is assumed to be 
uniformly distributed and a simple formula is used to esti- 
mate spatial join selectivity based on this assumption. The 
other levels divide the space into equi-sized cells, and use 
the uniformity assumption within each such cell. There are 
two factors affecting the accuracy of the estimation as the 
number of levels is increased. We can expect better accu- 
racy since a finer level of gridding will help better adhere 
to the uniformity assumption within each grid cell. How- 
ever, finer gridding can result in data items spanning sev- 
eral grid cells, causing the estimation to multiple count (in 
several cells) the intersections (leading to an overestima- 
tion). Consequently, we expect the accuracy curves to first 
trend downward (the former factor is more significant) and 
then trending upward (the latter factor becomes more sig- 
nificant at higher h). This can be observed for TCB with TS 
join. Since the datasets for this join are: clustered, the uni- 
formity assumption hurts at lower levels. However, we find 
that we do not want to go beyond level 5, since the multi- 
ple counting starts hurting accuracy. In the joins for CAR 
with CAS and SPG with SP, the errors keep dropping even 
upto level 9. Since these datasets are highly skewed, the 
uniformity assumption is a severe restriction at lower lev- 
els. In the joins for SCRC with SURA, the uniformity as- 
sumption holds (SURA and SURB have been generated that 
way) causing the multiple counting factor to become more 
significant even at level 1. With increasing levels, the time 
and space costs go up as well. However., even at level 9, the 
estimation time takes less than 10% of the cost of perform- 
ing the actual join, and the time for building the histogram 
file is also a rather small percentage of the time to build the 
R-trees. The sudden spike in building times at high levels is 
because the histogram file gets too large to fit in memory. It 
should be noted that the histogram file size is purely depen- 
dent on the level of gridding and not om the dataset itself. 
In summary, the PH scheme gives acceptable (10% errors) 
accuracy at level 5, with the time and space costs being neg- 
ligible at this level of gridding. 

Moving on to the GH scheme, we find the estimation 
errors monotonically decrease with the level of gridding. 
One can recall that this scheme attempts; to avoid the double 
counting problem. As a result, it does not have the draw- 
back that PH had with higher grid cells. Increasing the 
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gridding level makes the cells small enough so that the in- 
formation within the cell is more accurately captured (false 
intersections are discounted). Consequently, the errors only 
decrease with gridding level. This is a nice property of GH 
which makes it somewhat more attractive than PH or any of 
the sampling schemes that are more unpredictable. The es- 
timation time for GH is even lower than for PH. In fact, GH 
is very accurate (less than 5% errors) in all the four joins 
that are shown here, at level 7 (where the estimation time 
is around 1% or less). The space overhead for storing the 
histogram is typically 10% or lower for GH at this level. 

In summary, GH is much more desirable than PH. Not 
only is the accuracy better for GH, but the results are much 
more stable as we increase the gridding level (PH requires 
us to find a good sweet spot for the gridding level). GH 
requires less space than PH (compare the information stored 
for the two schemes in Tables 1 and 2 ,and is also slightly 
less time consuming for each grid cell (compare Equations 
3 and 5) .  These factors make GH a much better option than 
PH. 

5. Concluding remarks and future work 

Shekhar et al. [22] identify analysis of common spatial 
operations to be a crucial and daunting open problem for the 
success of SDBMS. This paper attacks the selectivity esti- 
mation of spatil joins by exploring the suitability of well- 
known sampling techniques and proposing two histogram- 
based techniques. One of the proposed histogram-based 
techniques, called the Geometric Histogram (GH) scheme, 
consistently brings error down to less than 5 %  with little 
overheads on various datasets. 

In the future, we would like to develop analysis tech- 
niques for estimating selectivity and I/O costs for other 
spatial database operations, in addition to developing a 
SDBMS incorporating query optimizations based on these 
analysis techniques. 
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