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Abstract 

Several models of parallel disks are found in the liter- 
ature. These models have been proposed to alleviate the 
I/O bottleneck arising in handling voluminous data. These 
models have the general theme of assuming multiple disks. 
For instance the Parallel Disk Systems (PDS) model as- 
sumes D disks and a single computer It is also assumed 
that a block of data from each of the D disks can be fetched 
into the main memory in one parallel I/O operation. In this 
paper we present a more practical model for  multiple disks 
and evaluate it experimentally. This model is called a Par- 
allel Machine with Disks (PMD). A PMD can be thought of 
as a realization of the PDS model. A PMD can also be con- 
sidered as a special case of the hierarchical memory models 
proposed in the literature. We investigate the sorting prob- 
lem on the new model. Our analysis demonstrates the prac- 
ticality of the PMD. We also present experimental conjirma- 
tion of this aasertion with data from our implementations. 

1 Introduction 

Computing applications have advanced to a stage where 
voluminous data is the norm. The volume of data dictates 
the use of secondary storage devices such as disks. Even 
the use of just a single disk may not be sufficient to handle 
U0 operations efficiently. Thus researchers have introduced 
models with multiple disks. 

A model that has been studied extensively (which is a 
refinement of prior models) is the Parallel Disk Systems 
(PDS) model [19]. In this model there is a single computer 
and D disks. In one parallel YO, a block of data from each 
of the D disks can be brought into the main memory. A 
block consists of B records. If M is the internal mem- 
ory size, then one usually requires that M 2 2DB. Al- 
gorithm designers have proposed algorithms for numerous 
fundamental problems on the PDS model. In the analysis of 
these algorithms they counted only the U0 operations since 
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the local computations can be assumed to be very fast. 
The practical realization of this model is an important re- 

search issue. Models such as Hierarchical Memory Models 
(HMMs) [ 10, 1 I ]  have been proposed in the literature to ad- 
dress this issue. Realizations of HMMs using PRAMS and 
hypercubes have been explored [ 1 I]. Sorting algorithms on 
these realizations have been investigated. 

In this paper we propose a straight forward model called 
a Parallel Machine with Disks (PMD). A PMD can be 
thought of as a special case of the HMM. A PMD is nothing 
but a parallel machine where each processor has an associ- 
ated disk. The parallel machine can be structured or un- 
structured. If the parallel machine is structured, the under- 
lying topology could be a mesh, a hypercube, a star graph, 
etc. Examples of unstructured parallel computers include 
SMP, a cluster of workstations (employing PVM or MPI), 
etc. In some sense, the PMD is nothing but a parallel ma- 
chine where we study out of core algorithms. In the PMD 
model we not only count the U0 operations but also the 
communication steps. One can think of a PMD as a real- 
ization of the PDS model. Given the connection between 
HMMs and PDSs, we can state that prior works have con- 
sidered variants of the PMD where the underlying parallel 
machine is either a PRAM or a hypercube [ 1 1 1 .  

We begin the study of PMDs with the sorting problem. 
Sorting is an important problem of computing that finds ap- 
plications in all walks of life. We analyze the performance 
of the LMM sort algorithm of [I61 ob PMD (where the 
underlying parallel machine is a mesh, a hypercube, and 
a cluster of workstations). In particular, we compute the 
theoretical run times for sorting. These analyses demon- 
strate the practicality of the PMD. To confirm our assertion 
we have also experimented with the PMD where the under- 
lying parallel machine is a cluster of workstations (using 
PVM for interprocessor communications). In this paper we 
also present preliminary data from our experiments. 

In Section 2 we provide a summary of known algorithms 
for sorting on the PDS model. In Section 3 we present de- 
tails of the PMD model. To make our discussions concrete 
we use the mesh as the topology of the underlying paral- 
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le1 machine. However, the discussions apply to any parallel 
machine (with appropriate changes in some parameters). In 
Section 3 we also state some known theorems for routing 
and sorting on the mesh. Section 4 carries a brief descrip- 
tion of the LMM sort algorithm of [16]. In Section 5 we 
show how LMM can be applied on the PMD model and an- 
alyze the resulting run time. In Section 6 we present our 
experimental results. Section 7 concludes the paper. 

2 Sorting Results on the PDS Model 

Sorting has been studied well on the PDS model. A 
known lower bound for the number of I/O read steps for 
parallel disk sorting is’ R (& [MI). Here N is the 
number of records to be sorted and M is the internal mem- 
ory size. Also, B is the block size and D is the number of 
parallel disks used. There exist several asymptotically op- 
timal algorithms that make 0 D B  & I/O read 
steps (see e.g., [12, 1, 31). 

One of the early papers on disk sorting was by Aggarwal 
and Vitter [ 2 ] .  In the model they considered, each I/O oper- 
ation results in the transfer of D blocks each block having 
B records. A more realistic model was envisioned in [ 191. 
Several asymptotically optimal algorithms have been given 
for sorting on this model. Nodine and Vitter’s optimal al- 
gorithm [ 101 involves solving certain matching problems. 
Aggarwal and Plaxton’s optimal algorithm [ l ]  is based on 
the Sharesort algorithm of Cypher and Plaxton. Vitter and 
Shriver gave an optimal randomized algorithm for disk sort- 
ing [ 191. All of these results are highly nontrivial and the- 
oretically interesting. However, the underlying constants in 
their time bounds are high. 

In practice the simple disk-striped mergesort (DSM) is 
used [4], even though it is not asymptotically optimal. DSM 
has the advantages of simplicity and a small constant. Data 
accesses made by DSM is such that in any VO operation, 
the same portions of the D disks are accessed. This has 
the effect of having a single disk which can transfer D B  
records in a single U0 operation. An &-way mergesort is 
employed by this algorithm. To start with, initial runs are 
formed in one pass through the data. At the end the disk has 
N / M  runs each of length M .  Next, $$ runs are merged 
at a time. Blocks of any run are uniformly striped across 
the disks so that in future they can be accessed in parallel 
utilizing the full bandwidth. 

Each phase of merging involves one pass through the 
data. There are log(L,/DB) phases and hence the total num- 

ber of passes made by DSM is ,zr,/$i,. In other words, 
the total number of I/O read operations performed by the al- 
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log N M )  

‘Throughout this paper we use log to denote logarithms to the base 2 
and In to denote natural logarithms. 

log N M gorithm is J- 1 + log(L,!D&). The constant here is just 
1. 

If one assumes that N is a polynomial in M and that B 
is small (which are readily satisfied in practice), the lower 
bound simply yields R(1) passes. All the abovementioned 
optimal algorithms make only 0(1) passes. So, the chal- 
lenge in the design of parallel disk sorting algorithms is in 
reducing this constant. If M = 2DB, the number of passes 
made by DSM is 1 + log(N/M),  which indeed can be very 
high. 

Recently, several works have been done that deal with 
the practical aspects. Pai, Schaffer, and Varman [ 131 ana- 
lyzed the average case performance of a simple merging al- 
gorithm, employing an approximate model of average case 
inputs. Barve, Grove, and Vitter [4] have presented a sim- 
ple randomized algorithm (SRM) and analyzed its perfor- 
mance. The analysis involves the solution of certain occu- 
pancy problems. The expected number ReadsRM of VO 
read operations made by their algorithm is such that 

*B ( 
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The algorithm merges R = IcD runs at a time, for some in- 
teger k .  When R = R(D log D), the expected performance 
of their algorithm is optimal. However, in this case, the 
internal memory needed is R ( B D  log 0). They have also 
compared SRM with DSM through simulations and shown 
that SRM performs better than DSM. 

Recently, Rajasekaran [ 161 has presented an algorithm 
(called (1, m)-merge sort (LMM)) which is asymptotically 
optimal under the assumptions that N is a polynomial in M 
and B is small. The algorithm is as simple as DSM. LMM 
makes less number of passes through the data than DSM 
when D is large. 

Other problems such as FFT computations (see e.g., [ 5 ] ) ,  
selection (see e.g., [17]), etc. have also been studied on the 
PDS model. 

3 A Parallel Machine with Disks (PMD) 

In this section we give more details of the PMD model. 
A PMD is nothing but a parallel machine where each pro- 
cessor has a disk. Each processor has a core memory of 
size M .  In one VO operation, a block of B records can 
be brought into the core memory of each processor from 
its own disk. Thus there are a total of D = P disks in 
the PMD, where P is the number of processors. Records 
from one disk can be sent to another via the communication 
mechanism available for the parallel machine after bringing 
the records into the main memory of the origin processor. 
It is conceivable that the communication time is consider- 
able on the PMD. Thus it is essential to not only account 
for the VO operations but also for the communication steps, 
in analyzing any algorithm’s run time on the PMD. 
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PMD can be thought of as a special case of the HMM 
[ 1 I]. Realization of HMM using PRAMS and hypercubes 
have already been studied [ 113. 

The sorting problem on the PMD can be defined as fol- 
lows. There are a total of N records to begin with so that 
there are records in each disk. The problem is to rear- 
range the records such that they are in either ascending or- 
der or descending order with records ending up in each 
disk. It is assumed that the processors themselves have been 
ordered so that the smallest g records will be output in the 
first processor’s disk, the next smallest g records will be 
output in the second processor’s disk, and so on. This in- 
dexing scheme is in line with the usual indexing scheme 
used in a parallel machine. However any other indexing 
scheme can also be used. 

To make our discussions concrete, we will use the mesh 
as an example. Let the mesh be of size n x n. Then we 
have D = n2 disks. An indexing scheme is called for in 
sorting on a mesh (see e.g., [15]). Some popular index- 
ing schemes are column major, row major, snake-like row, 
blockwise row-major, etc. For the algorithm to be presented 
in this paper, any of these schemes can be employed. 

The algorithm to be presented in this paper employs as 
subroutines some randomjzed algorithms. We say a ran- 
domized algorithm uses O ( f ( n ) )  amount of any resource 
(such as time, space, etc.) if the amount of resource used is 
no more than caf (n)  with probability 2 (1  - n-&), where 
c is a constant and a is a constant 2 1: We can also de- 
fine other asymptotic functions such as n(.), li(.), etc. in a 
similar fashion. 

k - k routing and k - k sorting. The problem of packet 
routing plays a vital role in the design of algorithms on any 
parallel machine. The packet routing problem can be de- 
fined as follows. There is a packet of information to start 
with at each processor that is destined for some other pro- 
cessor. The problem is to send all the packets to their cor- 
rect destinations as quickly as possible. In any interconnec- 
tion network, one requires that at most one packet traverses 
through any edge at any time. The problem of partial per- 
mutation routing refers to packet routing when at most one 
packet originates from any processor and at most one packet 
is destined for any processor. Packet routing problems have 
been explored thoroughly on interconnection networks (see 

The problem of k - k routing is the problem of routing 
where at most k packets originate from any processor and 
at most k packets are destined for any processor. 

In the case of an n x n mesh, it is easy to prove a lower 
bound of on the routing time for this problem based on 
bisection considerations. There are algorithms whose run 
times match this bound closely as stated in the following 
Lemma. A proof of this Lemma can be found e.g., in [7]. 

e.g., [ W .  

Lemma 3.1 The k - k routing problem can be solved in 
;i- + li(kn) time on an n x n mesh. kn 

The problem of k - k sorting is defined as follows. There 
are k keys at each processor of a parallel machine. The 
problem is to rearrange the keys in either ascending or de- 
scending order according to some indexing scheme. 

In an n x n mesh, this problem also has a lower bound 
of on the run time. The following Lemma promises a 
closely optimal algorithm (see e.g., [ 151). 

Lemma 3.2 k - k sorting can be solved on an n x n mesh 
in + 6(kn )  steps. 

The above two Lemmas will be employed by our sorting 
algorithm on the mesh. It should be noted here that there 
exist deterministic algorithms (see e.g., [SI) fork- k routing 
and k - k sorting whose run times match those stated in 
Lemmas 3.1 and 3.2. However, we believe that the use of 
randomized algorithms will result in better performance in 
practice. 

4 The (e, m)-Merge Sort (LMM) 

Many of the sorting algorithms that have been proposed 
for the PDS are based on merging. These algorithms start 
by forming 5 runs each of length M .  A run is nothing 
but a sorted subsequence. Forming these initial runs takes 
only one pass through the data (or equivalently & parallel 
VO operations). After this, the algorithms will merge R 
runs at a time. Let a phase of mergings refer to the task 
of scanning through the input once and performing R-way 
mergings. Note that each phase of mergings will reduce the 
number of remaining runs by a factor of R. For example, 
the DSM algorithm employs R = &. The various sorting 
algorithms differ in how each phase of mergings is done. 

The (e ,  m)-merge sort algorithm of [I61 is also based on 
merging. It employs R = e, for some appropriate e. The 
LMM is a generalization of the odd-even merge sort, the 
s2-way merge sort of Thompson and Kung [18], and the 
columnsort algorithm of Leighton [9 ] .  

The odd-even mergesort algorithm employs R = 2. It 
repeatedly merges two sequences at a time. To begin with 
there are n sorted runs each of length 1. From thereon 
the number of runs is decreased by a factor of 2 with each 
phase of mergings. Two runs are merged using the odd-even 
merge algorithm that is described below. 

1) Let U = 211,212,. . . ,uq  and V = ~ 1 ~ ~ 2 , .  . .,vq be 
the two sorted sequences to be merged. Unshufle U into 
two, i.e., partition U into two: U o d d  = ~ 1 , 2 1 3 ,  . . . , uq-l and 
Ueven = u 2 ,  u4,. . . , uq. Similarly partition V into Vodd 
and Veven. 
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2) Now recursively merge U o d d  with Vodd. Let X = 
X I , X ~ ,  . . . , xg  be the result. Also merge U,,,, with V,,,,. 
Let Y = y1, y2, . . . , yq be the result. 

3) ShufJEe X and Y, i.e., form the sequence: 2 = 
~ 1 , Y 1 , ~ 2 , Y 2 , . . . , ~ g , Y g .  

4) Perform one step of compare-exchange operation, i.e., 
sort successive subsequences of length two in 2. In other 
words, sort y1,x2; sort y2,x3; and so on. The resultant 
sequence is the merge of U and V. 

The correctness of this algorithm can be established us- 
ing the zero-one principle. The algorithm of Thompson and 
Kung [ 181 is a generalization of the above algorithm where 
R is taken to be s2 for some appropriate function s of n. 
At any given time s2 runs are merged using an algorithm 
similar to the above. 

LMM is a generalization of s2-way merge sort algo- 
rithm. It uses R = e.  Each phase of mergings thus reduces 
the number of runs by a factor of e .  At any time, e runs 
are merged using the (e, m)-merge algorithm. This merg- 
ing algorithm is similar to the odd-even merge except that 
in Step 1, the runs are m-way unshuffled (instead of 2-way 
unshuffling). In Step 3, m sequences are shuffled and also 
in Step 4, the local sorting is done differently. A detailed 
description of the merging algorithm follows. 

Algorithm ( 1 ,  m)-merge 

1) Let the sequences to be merged be Ui = 
U ~ , U : ,  . . . ,U:, for 1 5 i 5 1.  If r is small use a base case 
algorithm. Otherwise, unshuffle each Ui into m parts. In 
particular, partition Ui into U:, U:, . . . , U T ,  where U: = 
ut, u : + ~ ,  . . .; U: = us, u : + ~ ,  . . .; and so on. 

Recursively merge U{, U i ,  . . . , U/, for 1 5 j 5 m. Let the 
merged sequences be Xj = x: ,x:, . . . , x j  , for 1 5 j 5 
m. 

2) 

l r / m  

3) Shuffle X I , X ~ ,  . . . , X m ,  i.e., form the se- 
quence Z = x:,x?j ,... ,x&, xy,xi ,..., xm 2 ,..., 

l r lm x y m ,  x;lm ,..., X m  . 

4) It can be shown that at this point the length of the 
‘dirty sequence’ (i.e., unsorted portion) is no more than lm. 
But we don’t know where the dirty sequence is located. We 
can cleanup the dirty sequence in many different ways. One 
way is described below. 

Call the sequence of the first Zm elements of 2 as 21; 
the next lm elements as 2 2 ;  and so on. In other words, 2 
is partitioned into Zl ,Zz , .  . . , Zr lm.  Sort each one of the 
Zi’s. Followed by this merge 21 and 22; merge Z3 and Z4; 
etc. Finally merge 2 2  and Z3; merge Z4 and 2 5 ;  and so on. 

The above algorithm is not specific to any architecture. 
(The same can be said about any algorithm). An implemen- 
tation of LMM on PDS has been given in [ 161. The number 
of U0 operations needed in this implementation has been 

shown to be [m, + 11 . When N is 

a polynomial in M and M is a polynomial in B this re- 
duces to a constant number of passes through the data and 
hence LMM is optimal. In [16] it has been demonstrated 
that LMM can be faster than the DSM when D is large. Re- 
cent implementation results of Cormen and Pearson [6, 141 
indicate that LMM is competitive in practice. Thus a nat- 
ural choice of sorting algorithm for PMD is LMM. In the 
next Section we implement LMM on a PMD and analyze 
the resultant U 0  and communication steps. 

2 

5 Sorting on the PMD 

We begin by considering the sorting problem on the 
mesh. Then we generalize the derived result to any parallel 
machine. 

5.1 TheMesh 

Consider a PMD where the underlying machine is an n x 
n mesh. The number of disks is D = n2. Each node in the 
mesh is a processor with a core memory of size M. In one 
U 0  operation, a processor can bring a block of B records 
into its main memory. Thus the PMD as a whole can bring 
in DB records in one U 0  operation. I.e., we can relate a 
PMD with a PDS whose main memory capacity is D M  and 
that has D disks. 

Let the number of records to be sorted be N .  To be- 
gin with, there are $ records at each disk of the PMD. 
The goal is to rearrange the records in either ascending or- 
der or descending order such that each disk gets % records 
at the end. An indexing scheme has to be assumed. For 
the algorithm to be presented any of the following schemes 
will be acceptable: row-major, column-major, snake-like 
row-major, snake-like column-major, blockwise row-major, 
blockwise column-major, blockwise snake-like row-major, 
and blockwise snake-like column-major. We assume the 
blockwise snake-like row-major order for the following pre- 
sentations. The block size is s. I.e., the first (in the snake- 
like row-major order) processor will store the smallest % 
records, the second processor will store the next smallest 3 
records, and so on. 

As one can easily see, the entire LMM algorithm consists 
of shuffling, unshuffling and local sorting steps. We use 
the k - k routing and k - k sorting algorithms (Lemmas 
3.1 and 3.2) to perform these steps. Typically, we bring 
records from the disks until the local memories are filled. 
Processing on these records is done using k - k routing and 
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k - k sorting algorithms. The queue length of k - k sorting 
and k - k routing algorithms is k + Z(k) .  So we do not fill 
M completely. We only half-fill the local memories so as 
to run the randomized algorithms. Also in order to overlap 
U0 with local computations, only half of this memory can 
be used to store operational data. We refer to this portion 
of the core memory as M .  I.e., M is one-fourth of the core 
memory size available for each processor. 

sorted runs each of length 
D M .  The number of U 0  operations performed is A, 
Also, the number of communication steps is 6(gn). This 
is so because, we perform & number of k - k sortings 
(with k = M )  and each such sort takes kn + C(kn) steps. 
In this paper-we have chosen'to express the communication 
steps using O(.) instead of calculating the underlying con- 
stants explicitly. There are two reasons: 1 )  Calculating this 
constant is easy - we prefer to keep the discussion simple, 
and 2 )  The permutations we achieve using k - k sorting 
and k - k routing algorithms are often regular and perhaps 
the full power of these algorithms are not called for. Le., 
it may be possible to devise more efficient algorithms for 
these permutations implying an improvement in the under- 
lying constants. We plan to investigate this in our future 
work. 

Since LMM is based on merging in phases, we have to 
specify how the runs in a phase are stored across the D 
disks. Let the disks as well as the runs be numbered from 
zero. We use the same scheme as the one given in 1161. 
Each run will be striped across the disks. If R 2 D ,  the 
starting disk for the ith run is i mod D, i.e., the zeroth block 
of the ith run will be in disk i mod D ;  its first block will be 
in disk (i + 1) mod D ;  and so on. This will enable us to 
access, in one YO read operation, one block each from D 
distinct runs and hence obtain perfect disk parallelism. If 
R < D ,  the starting disk for the ith run is ig. (Assume 
without loss of generality that D divides R.) Even now, 
we can obtain $ blocks from each of the runs in one U 0  
operation and hence achieve perfect disk parallelism. 

To begin with we form 

5.1.1 Base Cases 

LMM is a recursive algorithm whose base cases are handled 
efficiently. We now discuss two base cases. 

Base Case 1. Consider the problem of merging 
runs each of length D M ,  when 2 m. This merg- 
ing is done using (e, m)-merge with C = m = m. 

Let Ul ,  U2,. . . ,U,, be the sequences to be merged. 
In Step 1, each Vi gets unshuffled into m parts so that 
each part is of length m. This unshuffling can be done 
in one pass through the data. Thus the num-ber of VO oper- 
ations is &. The communication time is O( gn). 

Note. Throughout the algorithm, each pass through the data 
will involve $ VO operations and E n  communication 
steps. Also, we use T(u ,  w) to denote the number of read 
passes needed to merge U sequences of length w each. 

merges to do, each merge 
involving m sequences of length each. Since 
there are only D M  records in each merge, all the mergings 
can be done in one pass through the data. Steps 3 and 4 
perform shuffling and cleaning up, respectively. The length 
of the dirty sequence is (m)2 = D M .  These two steps 
can be combined and finished in one pass through the data 
(see [ 161 for details). Thus we get: 

Lemma 5.1 T ( m ,  D M )  = 3, if+ 2 m. 

In Step 2, we have 

Base Case 2. This is the case of merging % runs each 
of length D M ,  when % < m. This problem can be 
solved using ( e ,  m)-merge with e = m = 9. 

Lemma 5.2 T (Y, D M )  = 3, $9 < m?. 
In this case we can obtain: 

5.1.2 The Sorting Algorithm 

LMM algorithm has been presented in two cases. In our im- 
plementation the two cases will be when y 2 and 
when 9 < m. In either case, initial runs are formed 
in one pass at the end of which & sorted sequences of 
length D M  each remain to be merged. 

When y 2 m, (C,m)-merge is employed with 
C = m = m. Let K denote m and let & = K2'. 
In other words, c = log I,,!g(hM) N DM I .  

T ( . )  can be expressed as follows. 
T ( K ~ = ,  D M )  = T ( K ,  DM)+T(K,  KDM)+. .  .+T(K, K ~ = - ' D M )  

(2) 

The above relation basically means that there are K2' 
sequences of length D M  each to begin with; we merge K 
at a time to end up with K2'-' sequences of length K D M  
each; again merge K at a time to end up with K2c-2 se- 
quences of length K 2 D M  each; and so on. Finally there 
will be K sequences of length K2+' D M  each which are 
merged. Each of these mergings is done using (e ,  m)-merge 
with e = m = m. 

It can also be shown that 

T ( K ,  K i D M )  = 2i + T ( K ,  D M )  = 2i + 3. 

The fact that T ( K ,  D M )  = 3 (c.f. Lemma 5.1) has been 
used. 

Upon substituting this into Equation 2, we get 

2c-1 

T ( K 2 " ,  D M )  = (2i + 3) = 4c2 + 4c 
i=O 

341 



5.2 Sorting on a General PMD where c = l o g ( N / D M )  l og (DM)  ' 
We have the following 

Theorem 5.1 The number of read passes needed to sort 

N records is 1 + 4 ( l o , $ ~ ~ $ ~ )  ) 2  + 4=> i f  

2 m. This number of passes is no more than 
2 

[ l og (mir r I&,DM/B})  log(N D M )  
+ 11 . This means that the num- 

ber of I/O read operations is no more than 

The number of communication steps is no more than 

The second case to be considered is when < 
m. Here (l,m)-merge will be used with 1 = m = 
- D / .  Let Q denote and let & = Qd.  That is, 
d = 1% logiDLIB). N D M )  L' ike in case 1 we can get 

T ( Q d ,  D M )  = T ( Q ,  D M )  +T(Q,  Q D M )  + . . .+T(Q, Q d - ' D M )  
(3) 

Also, we can get, 

T ( Q ,  Q i D M )  = 2i + T ( Q ,  D M )  = 2i f 3. 

Here the fact T ( Q ,  D M )  = 3 (c.f. Lemma 5.2) has been 
used. 

Equation 3 now becomes 
d-1 

T ( Q d , D M )  = c ( 2 i  + 3) = d2 + 2d 
i=O 

Theorem52 The number of read passes needed to 
sort N records on the PMD is upper bounded by 

Theorems 5.1 and 5.2 readily yield 

Theorem53 We can sort N records in 5 
9 3  

I -  log N D M )  
I log(min{%,DM/B})  + read passes Over the 

data. The total number of U0 read operations 
- 3  

the total number '.f communication steps needed is 

+ 11 2, 

log(N D M )  ( g n  [ log(min{&,DM/B} 
0 

In this section we consider a general PMD where the un- 
derlying parallel machine can either be structured (e.g., the 
mesh, the hypercube, etc.) or unstructured (e.g., SMP, a 
cluster of workstations, etc.). 

We can apply LMM on a general PMD in which case 
the number of YO operations will remain the same, i.e., 

& [ + 11 '. As has become clear from 

our discussion on the mesh, we need mechanisms for k - k 
routing and k - k sorting. Let RM and SM denote the time 
needed for performing one M - M routing and one M - M 
sorting on the parallel machine, respectively. Then, in each 
pass through the data, the total communication time will 
be &(RM + S M ) ,  implying that the total communica- 
tion time for the entire algorithm will be 5 &(RM + 

2 lo N D M  si4*++] . 
Thus we get the following general Theorem. 

Theorem54 Sorting on a PMD can be per- 

formed in 6 [ l o g ( m i n { m , D M / B }  l o g ( N / D M )  + 112 I/O 
operations. The total communication time is 

6 Experimental Results 

In this section we report our experimental evaluation of 
the PMD when the underlying parallel machine is a network 
of workstations. The problem considered is sorting. PVM 
has been employed to achieve interprocessor communica- 
tions. We assume that each processor has a disk associated 
with it and has a core memory of size M .  

Let P be the number of processors. In our implementa- 
tion, we had N = P M ,  where N is the input size. Disks 
are realized using files. Let F' be the file associated with 
processor i, fori = 1,2 ,  . . . , P. To begin with each proces- 
sor has M keys. At the end, the first processor will have the 
smallest M keys, the second processor will have the next 
smallest M keys, and so on. 

LMM sort is a recursive algorithm. It may not help to run 
several levels of recursion in practice since the communica- 
tion cost will be prohibitive. Thus we have used a simplified 
version of LMM sort. To begin with, each processor sorts 
its M keys. Let Xi be the sorted sequence at processor i, for 
i = 1 ,2 , .  . . , P. Then we use the (e ,  m)-merge algorithm 
(with = P )  to merge the P sorted sequences except that 
we don't do the merge recursively. The value of m has been 
taken to be 240. We have varied the value of m to see its 
influence on the run time. But the speedup we get seems to 
be nearly the same over a variety of values for m. 
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The files associated with the different processors have 
been stored in the same directory. In Step 1 of (e, m)-merge, 
the unshuffle is done in parallel. The resultant parts of pro- 
cessor i (call them X i ,  X? ,  . . . , xy) are written back in 
file Fi. 

In Step 2, we need to merge X i ,  X i , .  . . , X& for i = 
1,2, . . . , m. This is done in parallel (without recursion). 
Note that file Fj has F;’, F;, . . . , F T ,  for j = 1,2, . . . , P. 
Each processor reads M relevant keys, merges them locally 
(by sorting them), and outputs them back in its file. 

For example, processor 1 reads X t  , X i  , . . . , X;. At the 
same time processor 2 reads X f ,  X;, . . . , X;, and so on. 
After the processors read the relevant keys, they perform 
merging in parallel. 

In Step 3 also we perform shuffling in parallel along the 
same lines as in Step 2. In Step 4 we clean the dirty se- 
quence. The length of the dirty sequence is at most Pm.  
For simplicity we choose the number of keys in each file to 
be a divisor of 2Pm. By doing this our program can achieve 
perfect parallelism even in Step 4. 

Our goal was to compare the performance of the PMD 
algorithm with a sequential algorithm. The sequential algo- 
rithm is the same as the parallel algorithm (i.e., LMM sort) 
with the same values for C and m. We assumed a single 
processor with a core memory of size M and a single disk. 

In the past we have implemented various in-core sort- 
ing algorithms (both deterministic and randomized) on a 
network of workstations to see if we can achieve decent 
speedups. But we have failed in each attempt. The reason 
is that the run time of the sorting algorithms we tried were 
O(N1ogN) ( N  being the input size). For this low a run 
time, speedups are difficult to achieve since the communi- 
cation costs will be dominating. Thus we were wondering if 
it was possible to achieve speedups using the PMD model. 

Our experimental results indicate that it is possible to 
obtain impressive speedups using the PMD model. The ta- 
ble below summarizes the case of 4 processors. The times 
shown are seconds. 

J 

655,360 I 44.8 15.1 2.98 
327,680 1 22.4 8.8 2.55 

When the input size decreases, the speedup also de- 
creases. This is because of the fact that the communication 
time becomes considerable when the input size decreases. 

We are conducting more experiments varying the num- 
ber of processors and the value of m, etc. More data will be 
provided in the final version of this paper. 

7 Conclusions 

We have investigated a straight forward model of com- 
puting with multiple disks (which can be thought of as 
a special case of the HMM). This model, PMD, can be 
thought of as a realization of prior models such as the PDS. 
We have also presented a sorting algorithm for the PMD. An 
interesting open problem is if we can avoid the use of k - k 
routing and k - k sorting algorithms, instead use some al- 
gorithms specific to the permutations under concern (i.e., 
unshuffle and shuffle), and hence improve the underlying 
constant in the communication complexity. Investigating 
other problems on the PMD is also open. Our experimental 
results for sorting indicate that we can get decent speedups 
in practice using the PMD model. 
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