
A Practical Realization of Parallel Disks

Sanguthevar Rajasekaran
Dept. of CISE, University of Florida

Gainesville FL 326 1 1
raj @cise.ufl.edu

Abstract

Several models of parallel disks are found in the liter-
ature. These models have been proposed to alleviate the
I/O bottleneck arising in handling voluminous data. These
models have the general theme of assuming multiple disks.
For instance the Parallel Disk Systems (PDS) model as-
sumes D disks and a single computer It is also assumed
that a block of data from each of the D disks can be fetched
into the main memory in one parallel I/O operation. In this
paper we present a more practical model for multiple disks
and evaluate it experimentally. This model is called a Par-
allel Machine with Disks (PMD). A PMD can be thought of
as a realization of the PDS model. A PMD can also be con-
sidered as a special case of the hierarchical memory models
proposed in the literature. We investigate the sorting prob-
lem on the new model. Our analysis demonstrates the prac-
ticality of the PMD. We also present experimental conjirma-
tion of this aasertion with data from our implementations.

1 Introduction

Computing applications have advanced to a stage where
voluminous data is the norm. The volume of data dictates
the use of secondary storage devices such as disks. Even
the use of just a single disk may not be sufficient to handle
U0 operations efficiently. Thus researchers have introduced
models with multiple disks.

A model that has been studied extensively (which is a
refinement of prior models) is the Parallel Disk Systems
(PDS) model [19]. In this model there is a single computer
and D disks. In one parallel YO, a block of data from each
of the D disks can be brought into the main memory. A
block consists of B records. If M is the internal mem-
ory size, then one usually requires that M 2 2DB. Al-
gorithm designers have proposed algorithms for numerous
fundamental problems on the PDS model. In the analysis of
these algorithms they counted only the U0 operations since

Xiaoming Jin
Dept. of CISE, University of Florida

Gainesville FL 326 1 1
xjin @cise.ufl.edu

the local computations can be assumed to be very fast.
The practical realization of this model is an important re-

search issue. Models such as Hierarchical Memory Models
(HMMs) [10, 1 I] have been proposed in the literature to ad-
dress this issue. Realizations of HMMs using PRAMS and
hypercubes have been explored [1 I]. Sorting algorithms on
these realizations have been investigated.

In this paper we propose a straight forward model called
a Parallel Machine with Disks (PMD). A PMD can be
thought of as a special case of the HMM. A PMD is nothing
but a parallel machine where each processor has an associ-
ated disk. The parallel machine can be structured or un-
structured. If the parallel machine is structured, the under-
lying topology could be a mesh, a hypercube, a star graph,
etc. Examples of unstructured parallel computers include
SMP, a cluster of workstations (employing PVM or MPI),
etc. In some sense, the PMD is nothing but a parallel ma-
chine where we study out of core algorithms. In the PMD
model we not only count the U0 operations but also the
communication steps. One can think of a PMD as a real-
ization of the PDS model. Given the connection between
HMMs and PDSs, we can state that prior works have con-
sidered variants of the PMD where the underlying parallel
machine is either a PRAM or a hypercube [1 1 1 .

We begin the study of PMDs with the sorting problem.
Sorting is an important problem of computing that finds ap-
plications in all walks of life. We analyze the performance
of the LMM sort algorithm of [I61 ob PMD (where the
underlying parallel machine is a mesh, a hypercube, and
a cluster of workstations). In particular, we compute the
theoretical run times for sorting. These analyses demon-
strate the practicality of the PMD. To confirm our assertion
we have also experimented with the PMD where the under-
lying parallel machine is a cluster of workstations (using
PVM for interprocessor communications). In this paper we
also present preliminary data from our experiments.

In Section 2 we provide a summary of known algorithms
for sorting on the PDS model. In Section 3 we present de-
tails of the PMD model. To make our discussions concrete
we use the mesh as the topology of the underlying paral-

337
0-7695-077 1 -9/00 $10.00 0 2000 IEEE

mailto:cise.ufl.edu
mailto:cise.ufl.edu

le1 machine. However, the discussions apply to any parallel
machine (with appropriate changes in some parameters). In
Section 3 we also state some known theorems for routing
and sorting on the mesh. Section 4 carries a brief descrip-
tion of the LMM sort algorithm of [16]. In Section 5 we
show how LMM can be applied on the PMD model and an-
alyze the resulting run time. In Section 6 we present our
experimental results. Section 7 concludes the paper.

2 Sorting Results on the PDS Model

Sorting has been studied well on the PDS model. A
known lower bound for the number of I/O read steps for
parallel disk sorting is’ R (& [MI). Here N is the
number of records to be sorted and M is the internal mem-
ory size. Also, B is the block size and D is the number of
parallel disks used. There exist several asymptotically op-
timal algorithms that make 0 D B & I/O read
steps (see e.g., [12, 1, 31).

One of the early papers on disk sorting was by Aggarwal
and Vitter [2] . In the model they considered, each I/O oper-
ation results in the transfer of D blocks each block having
B records. A more realistic model was envisioned in [191.
Several asymptotically optimal algorithms have been given
for sorting on this model. Nodine and Vitter’s optimal al-
gorithm [101 involves solving certain matching problems.
Aggarwal and Plaxton’s optimal algorithm [l] is based on
the Sharesort algorithm of Cypher and Plaxton. Vitter and
Shriver gave an optimal randomized algorithm for disk sort-
ing [191. All of these results are highly nontrivial and the-
oretically interesting. However, the underlying constants in
their time bounds are high.

In practice the simple disk-striped mergesort (DSM) is
used [4], even though it is not asymptotically optimal. DSM
has the advantages of simplicity and a small constant. Data
accesses made by DSM is such that in any VO operation,
the same portions of the D disks are accessed. This has
the effect of having a single disk which can transfer D B
records in a single U0 operation. An &-way mergesort is
employed by this algorithm. To start with, initial runs are
formed in one pass through the data. At the end the disk has
N / M runs each of length M . Next, $$ runs are merged
at a time. Blocks of any run are uniformly striped across
the disks so that in future they can be accessed in parallel
utilizing the full bandwidth.

Each phase of merging involves one pass through the
data. There are log(L,/DB) phases and hence the total num-

ber of passes made by DSM is ,zr,/$i,. In other words,
the total number of I/O read operations performed by the al-

(-” [log(N I>

log N M)

‘Throughout this paper we use log to denote logarithms to the base 2
and In to denote natural logarithms.

log N M gorithm is J- 1 + log(L,!D&). The constant here is just
1.

If one assumes that N is a polynomial in M and that B
is small (which are readily satisfied in practice), the lower
bound simply yields R(1) passes. All the abovementioned
optimal algorithms make only 0(1) passes. So, the chal-
lenge in the design of parallel disk sorting algorithms is in
reducing this constant. If M = 2DB, the number of passes
made by DSM is 1 + log(N/M), which indeed can be very
high.

Recently, several works have been done that deal with
the practical aspects. Pai, Schaffer, and Varman [131 ana-
lyzed the average case performance of a simple merging al-
gorithm, employing an approximate model of average case
inputs. Barve, Grove, and Vitter [4] have presented a sim-
ple randomized algorithm (SRM) and analyzed its perfor-
mance. The analysis involves the solution of certain occu-
pancy problems. The expected number ReadsRM of VO
read operations made by their algorithm is such that

*B (

+ O(1,) R e a d S R M 5 -+--- (, + !2!22e + lL!e N N log(N/Mj l o g D

D B D E I o g k D k lag logD log log D log log D
(I 1

The algorithm merges R = IcD runs at a time, for some in-
teger k . When R = R(D log D), the expected performance
of their algorithm is optimal. However, in this case, the
internal memory needed is R (B D log 0). They have also
compared SRM with DSM through simulations and shown
that SRM performs better than DSM.

Recently, Rajasekaran [161 has presented an algorithm
(called (1, m)-merge sort (LMM)) which is asymptotically
optimal under the assumptions that N is a polynomial in M
and B is small. The algorithm is as simple as DSM. LMM
makes less number of passes through the data than DSM
when D is large.

Other problems such as FFT computations (see e.g., [5]) ,
selection (see e.g., [17]), etc. have also been studied on the
PDS model.

3 A Parallel Machine with Disks (PMD)

In this section we give more details of the PMD model.
A PMD is nothing but a parallel machine where each pro-
cessor has a disk. Each processor has a core memory of
size M . In one VO operation, a block of B records can
be brought into the core memory of each processor from
its own disk. Thus there are a total of D = P disks in
the PMD, where P is the number of processors. Records
from one disk can be sent to another via the communication
mechanism available for the parallel machine after bringing
the records into the main memory of the origin processor.
It is conceivable that the communication time is consider-
able on the PMD. Thus it is essential to not only account
for the VO operations but also for the communication steps,
in analyzing any algorithm’s run time on the PMD.

338

PMD can be thought of as a special case of the HMM
[1 I]. Realization of HMM using PRAMS and hypercubes
have already been studied [113.

The sorting problem on the PMD can be defined as fol-
lows. There are a total of N records to begin with so that
there are records in each disk. The problem is to rear-
range the records such that they are in either ascending or-
der or descending order with records ending up in each
disk. It is assumed that the processors themselves have been
ordered so that the smallest g records will be output in the
first processor’s disk, the next smallest g records will be
output in the second processor’s disk, and so on. This in-
dexing scheme is in line with the usual indexing scheme
used in a parallel machine. However any other indexing
scheme can also be used.

To make our discussions concrete, we will use the mesh
as an example. Let the mesh be of size n x n. Then we
have D = n2 disks. An indexing scheme is called for in
sorting on a mesh (see e.g., [15]). Some popular index-
ing schemes are column major, row major, snake-like row,
blockwise row-major, etc. For the algorithm to be presented
in this paper, any of these schemes can be employed.

The algorithm to be presented in this paper employs as
subroutines some randomjzed algorithms. We say a ran-
domized algorithm uses O (f (n)) amount of any resource
(such as time, space, etc.) if the amount of resource used is
no more than caf (n) with probability 2 (1 - n-&), where
c is a constant and a is a constant 2 1: We can also de-
fine other asymptotic functions such as n(.), li(.), etc. in a
similar fashion.

k - k routing and k - k sorting. The problem of packet
routing plays a vital role in the design of algorithms on any
parallel machine. The packet routing problem can be de-
fined as follows. There is a packet of information to start
with at each processor that is destined for some other pro-
cessor. The problem is to send all the packets to their cor-
rect destinations as quickly as possible. In any interconnec-
tion network, one requires that at most one packet traverses
through any edge at any time. The problem of partial per-
mutation routing refers to packet routing when at most one
packet originates from any processor and at most one packet
is destined for any processor. Packet routing problems have
been explored thoroughly on interconnection networks (see

The problem of k - k routing is the problem of routing
where at most k packets originate from any processor and
at most k packets are destined for any processor.

In the case of an n x n mesh, it is easy to prove a lower
bound of on the routing time for this problem based on
bisection considerations. There are algorithms whose run
times match this bound closely as stated in the following
Lemma. A proof of this Lemma can be found e.g., in [7].

e.g., [W .

Lemma 3.1 The k - k routing problem can be solved in
;i- + li(kn) time on an n x n mesh. kn

The problem of k - k sorting is defined as follows. There
are k keys at each processor of a parallel machine. The
problem is to rearrange the keys in either ascending or de-
scending order according to some indexing scheme.

In an n x n mesh, this problem also has a lower bound
of on the run time. The following Lemma promises a
closely optimal algorithm (see e.g., [151).

Lemma 3.2 k - k sorting can be solved on an n x n mesh
in + 6(kn) steps.

The above two Lemmas will be employed by our sorting
algorithm on the mesh. It should be noted here that there
exist deterministic algorithms (see e.g., [SI) fork- k routing
and k - k sorting whose run times match those stated in
Lemmas 3.1 and 3.2. However, we believe that the use of
randomized algorithms will result in better performance in
practice.

4 The (e, m)-Merge Sort (LMM)

Many of the sorting algorithms that have been proposed
for the PDS are based on merging. These algorithms start
by forming 5 runs each of length M . A run is nothing
but a sorted subsequence. Forming these initial runs takes
only one pass through the data (or equivalently & parallel
VO operations). After this, the algorithms will merge R
runs at a time. Let a phase of mergings refer to the task
of scanning through the input once and performing R-way
mergings. Note that each phase of mergings will reduce the
number of remaining runs by a factor of R. For example,
the DSM algorithm employs R = &. The various sorting
algorithms differ in how each phase of mergings is done.

The (e , m)-merge sort algorithm of [I61 is also based on
merging. It employs R = e, for some appropriate e. The
LMM is a generalization of the odd-even merge sort, the
s2-way merge sort of Thompson and Kung [18], and the
columnsort algorithm of Leighton [9] .

The odd-even mergesort algorithm employs R = 2. It
repeatedly merges two sequences at a time. To begin with
there are n sorted runs each of length 1. From thereon
the number of runs is decreased by a factor of 2 with each
phase of mergings. Two runs are merged using the odd-even
merge algorithm that is described below.

1) Let U = 211,212,. . . ,uq and V = ~ 1 ~ ~ 2 , . . .,vq be
the two sorted sequences to be merged. Unshufle U into
two, i.e., partition U into two: U o d d = ~ 1 , 2 1 3 , . . . , uq-l and
Ueven = u 2 , u4,. . . , uq. Similarly partition V into Vodd
and Veven.

339

2) Now recursively merge U o d d with Vodd. Let X =
X I , X ~ , . . . , xg be the result. Also merge U,,,, with V,,,,.
Let Y = y1, y2, . . . , yq be the result.

3) ShufJEe X and Y, i.e., form the sequence: 2 =
~ 1 , Y 1 , ~ 2 , Y 2 , . . . , ~ g , Y g .

4) Perform one step of compare-exchange operation, i.e.,
sort successive subsequences of length two in 2. In other
words, sort y1,x2; sort y2,x3; and so on. The resultant
sequence is the merge of U and V.

The correctness of this algorithm can be established us-
ing the zero-one principle. The algorithm of Thompson and
Kung [181 is a generalization of the above algorithm where
R is taken to be s2 for some appropriate function s of n.
At any given time s2 runs are merged using an algorithm
similar to the above.

LMM is a generalization of s2-way merge sort algo-
rithm. It uses R = e. Each phase of mergings thus reduces
the number of runs by a factor of e . At any time, e runs
are merged using the (e, m)-merge algorithm. This merg-
ing algorithm is similar to the odd-even merge except that
in Step 1, the runs are m-way unshuffled (instead of 2-way
unshuffling). In Step 3, m sequences are shuffled and also
in Step 4, the local sorting is done differently. A detailed
description of the merging algorithm follows.

Algorithm (1 , m)-merge

1) Let the sequences to be merged be Ui =
U ~ , U : , . . . ,U:, for 1 5 i 5 1. If r is small use a base case
algorithm. Otherwise, unshuffle each Ui into m parts. In
particular, partition Ui into U:, U:, . . . , U T , where U: =
ut, u : + ~ , . . .; U: = us, u : + ~ , . . .; and so on.

Recursively merge U{, U i , . . . , U/, for 1 5 j 5 m. Let the
merged sequences be Xj = x: ,x:, . . . , x j , for 1 5 j 5
m.

2)

l r / m

3) Shuffle X I , X ~ , . . . , X m , i.e., form the se-
quence Z = x:,x?j ,... ,x&, xy,xi ,..., xm 2 ,...,

l r lm x y m , x;lm ,..., X m .

4) It can be shown that at this point the length of the
‘dirty sequence’ (i.e., unsorted portion) is no more than lm.
But we don’t know where the dirty sequence is located. We
can cleanup the dirty sequence in many different ways. One
way is described below.

Call the sequence of the first Zm elements of 2 as 21;
the next lm elements as 2 2 ; and so on. In other words, 2
is partitioned into Zl ,Zz , . . . , Zr lm. Sort each one of the
Zi’s. Followed by this merge 21 and 22; merge Z3 and Z4;
etc. Finally merge 2 2 and Z3; merge Z4 and 2 5 ; and so on.

The above algorithm is not specific to any architecture.
(The same can be said about any algorithm). An implemen-
tation of LMM on PDS has been given in [161. The number
of U0 operations needed in this implementation has been

shown to be [m, + 11 . When N is

a polynomial in M and M is a polynomial in B this re-
duces to a constant number of passes through the data and
hence LMM is optimal. In [16] it has been demonstrated
that LMM can be faster than the DSM when D is large. Re-
cent implementation results of Cormen and Pearson [6, 141
indicate that LMM is competitive in practice. Thus a nat-
ural choice of sorting algorithm for PMD is LMM. In the
next Section we implement LMM on a PMD and analyze
the resultant U 0 and communication steps.

2

5 Sorting on the PMD

We begin by considering the sorting problem on the
mesh. Then we generalize the derived result to any parallel
machine.

5.1 TheMesh

Consider a PMD where the underlying machine is an n x
n mesh. The number of disks is D = n2. Each node in the
mesh is a processor with a core memory of size M. In one
U 0 operation, a processor can bring a block of B records
into its main memory. Thus the PMD as a whole can bring
in DB records in one U 0 operation. I.e., we can relate a
PMD with a PDS whose main memory capacity is D M and
that has D disks.

Let the number of records to be sorted be N . To be-
gin with, there are $ records at each disk of the PMD.
The goal is to rearrange the records in either ascending or-
der or descending order such that each disk gets % records
at the end. An indexing scheme has to be assumed. For
the algorithm to be presented any of the following schemes
will be acceptable: row-major, column-major, snake-like
row-major, snake-like column-major, blockwise row-major,
blockwise column-major, blockwise snake-like row-major,
and blockwise snake-like column-major. We assume the
blockwise snake-like row-major order for the following pre-
sentations. The block size is s. I.e., the first (in the snake-
like row-major order) processor will store the smallest %
records, the second processor will store the next smallest 3
records, and so on.

As one can easily see, the entire LMM algorithm consists
of shuffling, unshuffling and local sorting steps. We use
the k - k routing and k - k sorting algorithms (Lemmas
3.1 and 3.2) to perform these steps. Typically, we bring
records from the disks until the local memories are filled.
Processing on these records is done using k - k routing and

340

k - k sorting algorithms. The queue length of k - k sorting
and k - k routing algorithms is k + Z(k) . So we do not fill
M completely. We only half-fill the local memories so as
to run the randomized algorithms. Also in order to overlap
U0 with local computations, only half of this memory can
be used to store operational data. We refer to this portion
of the core memory as M . I.e., M is one-fourth of the core
memory size available for each processor.

sorted runs each of length
D M . The number of U 0 operations performed is A,
Also, the number of communication steps is 6(gn). This
is so because, we perform & number of k - k sortings
(with k = M) and each such sort takes kn + C(kn) steps.
In this paper-we have chosen'to express the communication
steps using O(.) instead of calculating the underlying con-
stants explicitly. There are two reasons: 1) Calculating this
constant is easy - we prefer to keep the discussion simple,
and 2) The permutations we achieve using k - k sorting
and k - k routing algorithms are often regular and perhaps
the full power of these algorithms are not called for. Le.,
it may be possible to devise more efficient algorithms for
these permutations implying an improvement in the under-
lying constants. We plan to investigate this in our future
work.

Since LMM is based on merging in phases, we have to
specify how the runs in a phase are stored across the D
disks. Let the disks as well as the runs be numbered from
zero. We use the same scheme as the one given in 1161.
Each run will be striped across the disks. If R 2 D , the
starting disk for the ith run is i mod D, i.e., the zeroth block
of the ith run will be in disk i mod D ; its first block will be
in disk (i + 1) mod D ; and so on. This will enable us to
access, in one YO read operation, one block each from D
distinct runs and hence obtain perfect disk parallelism. If
R < D , the starting disk for the ith run is ig. (Assume
without loss of generality that D divides R.) Even now,
we can obtain $ blocks from each of the runs in one U 0
operation and hence achieve perfect disk parallelism.

To begin with we form

5.1.1 Base Cases

LMM is a recursive algorithm whose base cases are handled
efficiently. We now discuss two base cases.

Base Case 1. Consider the problem of merging
runs each of length D M , when 2 m. This merg-
ing is done using (e, m)-merge with C = m = m.

Let Ul , U2,. . . ,U,, be the sequences to be merged.
In Step 1, each Vi gets unshuffled into m parts so that
each part is of length m. This unshuffling can be done
in one pass through the data. Thus the num-ber of VO oper-
ations is &. The communication time is O(gn).

Note. Throughout the algorithm, each pass through the data
will involve $ VO operations and E n communication
steps. Also, we use T(u , w) to denote the number of read
passes needed to merge U sequences of length w each.

merges to do, each merge
involving m sequences of length each. Since
there are only D M records in each merge, all the mergings
can be done in one pass through the data. Steps 3 and 4
perform shuffling and cleaning up, respectively. The length
of the dirty sequence is (m)2 = D M . These two steps
can be combined and finished in one pass through the data
(see [161 for details). Thus we get:

Lemma 5.1 T (m , D M) = 3, if+ 2 m.

In Step 2, we have

Base Case 2. This is the case of merging % runs each
of length D M , when % < m. This problem can be
solved using (e , m)-merge with e = m = 9.

Lemma 5.2 T (Y, D M) = 3, $9 < m?.
In this case we can obtain:

5.1.2 The Sorting Algorithm

LMM algorithm has been presented in two cases. In our im-
plementation the two cases will be when y 2 and
when 9 < m. In either case, initial runs are formed
in one pass at the end of which & sorted sequences of
length D M each remain to be merged.

When y 2 m, (C,m)-merge is employed with
C = m = m. Let K denote m and let & = K2'.
In other words, c = log I,,!g(hM) N DM I .

T (.) can be expressed as follows.
T (K ~ = , D M) = T (K , DM)+T(K, KDM)+. . .+T(K, K ~ = - ' D M)

(2)

The above relation basically means that there are K2'
sequences of length D M each to begin with; we merge K
at a time to end up with K2'-' sequences of length K D M
each; again merge K at a time to end up with K2c-2 se-
quences of length K 2 D M each; and so on. Finally there
will be K sequences of length K2+' D M each which are
merged. Each of these mergings is done using (e , m)-merge
with e = m = m.

It can also be shown that

T (K , K i D M) = 2i + T (K , D M) = 2i + 3.

The fact that T (K , D M) = 3 (c.f. Lemma 5.1) has been
used.

Upon substituting this into Equation 2, we get

2c-1

T (K 2 " , D M) = (2i + 3) = 4c2 + 4c
i=O

341

5.2 Sorting on a General PMD where c = l o g (N / D M) l og (DM) '
We have the following

Theorem 5.1 The number of read passes needed to sort

N records is 1 + 4 (l o , $ ~ ~ $ ~)) 2 + 4=> i f

2 m. This number of passes is no more than
2

[l og (mir r I&,DM/B}) log(N D M)
+ 11 . This means that the num-

ber of I/O read operations is no more than

The number of communication steps is no more than

The second case to be considered is when <
m. Here (l,m)-merge will be used with 1 = m =
- D / . Let Q denote and let & = Qd. That is,
d = 1% logiDLIB). N D M) L' ike in case 1 we can get

T (Q d , D M) = T (Q , D M) +T(Q, Q D M) + . . .+T(Q, Q d - ' D M)
(3)

Also, we can get,

T (Q , Q i D M) = 2i + T (Q , D M) = 2i f 3.

Here the fact T (Q , D M) = 3 (c.f. Lemma 5.2) has been
used.

Equation 3 now becomes
d-1

T (Q d , D M) = c (2 i + 3) = d2 + 2d
i=O

Theorem52 The number of read passes needed to
sort N records on the PMD is upper bounded by

Theorems 5.1 and 5.2 readily yield

Theorem53 We can sort N records in 5
9 3

I - log N D M)
I log(min{%,DM/B}) + read passes Over the

data. The total number of U0 read operations
- 3

the total number '.f communication steps needed is

+ 11 2,

log(N D M) (g n [log(min{&,DM/B}
0

In this section we consider a general PMD where the un-
derlying parallel machine can either be structured (e.g., the
mesh, the hypercube, etc.) or unstructured (e.g., SMP, a
cluster of workstations, etc.).

We can apply LMM on a general PMD in which case
the number of YO operations will remain the same, i.e.,

& [+ 11 '. As has become clear from

our discussion on the mesh, we need mechanisms for k - k
routing and k - k sorting. Let RM and SM denote the time
needed for performing one M - M routing and one M - M
sorting on the parallel machine, respectively. Then, in each
pass through the data, the total communication time will
be &(RM + S M) , implying that the total communica-
tion time for the entire algorithm will be 5 &(RM +

2 lo N D M si4*++] .
Thus we get the following general Theorem.

Theorem54 Sorting on a PMD can be per-

formed in 6 [l o g (m i n { m , D M / B } l o g (N / D M) + 112 I/O
operations. The total communication time is

6 Experimental Results

In this section we report our experimental evaluation of
the PMD when the underlying parallel machine is a network
of workstations. The problem considered is sorting. PVM
has been employed to achieve interprocessor communica-
tions. We assume that each processor has a disk associated
with it and has a core memory of size M .

Let P be the number of processors. In our implementa-
tion, we had N = P M , where N is the input size. Disks
are realized using files. Let F' be the file associated with
processor i, fori = 1,2 , . . . , P. To begin with each proces-
sor has M keys. At the end, the first processor will have the
smallest M keys, the second processor will have the next
smallest M keys, and so on.

LMM sort is a recursive algorithm. It may not help to run
several levels of recursion in practice since the communica-
tion cost will be prohibitive. Thus we have used a simplified
version of LMM sort. To begin with, each processor sorts
its M keys. Let Xi be the sorted sequence at processor i, for
i = 1 ,2 , . . . , P. Then we use the (e , m)-merge algorithm
(with = P) to merge the P sorted sequences except that
we don't do the merge recursively. The value of m has been
taken to be 240. We have varied the value of m to see its
influence on the run time. But the speedup we get seems to
be nearly the same over a variety of values for m.

342

The files associated with the different processors have
been stored in the same directory. In Step 1 of (e, m)-merge,
the unshuffle is done in parallel. The resultant parts of pro-
cessor i (call them X i , X? , . . . , xy) are written back in
file Fi.

In Step 2, we need to merge X i , X i , . . . , X& for i =
1,2, . . . , m. This is done in parallel (without recursion).
Note that file Fj has F;’, F;, . . . , F T , for j = 1,2, . . . , P.
Each processor reads M relevant keys, merges them locally
(by sorting them), and outputs them back in its file.

For example, processor 1 reads X t , X i , . . . , X;. At the
same time processor 2 reads X f , X;, . . . , X;, and so on.
After the processors read the relevant keys, they perform
merging in parallel.

In Step 3 also we perform shuffling in parallel along the
same lines as in Step 2. In Step 4 we clean the dirty se-
quence. The length of the dirty sequence is at most Pm.
For simplicity we choose the number of keys in each file to
be a divisor of 2Pm. By doing this our program can achieve
perfect parallelism even in Step 4.

Our goal was to compare the performance of the PMD
algorithm with a sequential algorithm. The sequential algo-
rithm is the same as the parallel algorithm (i.e., LMM sort)
with the same values for C and m. We assumed a single
processor with a core memory of size M and a single disk.

In the past we have implemented various in-core sort-
ing algorithms (both deterministic and randomized) on a
network of workstations to see if we can achieve decent
speedups. But we have failed in each attempt. The reason
is that the run time of the sorting algorithms we tried were
O(N1ogN) (N being the input size). For this low a run
time, speedups are difficult to achieve since the communi-
cation costs will be dominating. Thus we were wondering if
it was possible to achieve speedups using the PMD model.

Our experimental results indicate that it is possible to
obtain impressive speedups using the PMD model. The ta-
ble below summarizes the case of 4 processors. The times
shown are seconds.

J

655,360 I 44.8 15.1 2.98
327,680 1 22.4 8.8 2.55

When the input size decreases, the speedup also de-
creases. This is because of the fact that the communication
time becomes considerable when the input size decreases.

We are conducting more experiments varying the num-
ber of processors and the value of m, etc. More data will be
provided in the final version of this paper.

7 Conclusions

We have investigated a straight forward model of com-
puting with multiple disks (which can be thought of as
a special case of the HMM). This model, PMD, can be
thought of as a realization of prior models such as the PDS.
We have also presented a sorting algorithm for the PMD. An
interesting open problem is if we can avoid the use of k - k
routing and k - k sorting algorithms, instead use some al-
gorithms specific to the permutations under concern (i.e.,
unshuffle and shuffle), and hence improve the underlying
constant in the communication complexity. Investigating
other problems on the PMD is also open. Our experimental
results for sorting indicate that we can get decent speedups
in practice using the PMD model.

Acknowledgements

The first author thanks Tom Cormen and Matt Pearson
for many fruitful discussions.

References

[11 A. Aggarwal and C. G. Plaxton, Optimal Parallel Sort-
ing in Multi-Level Storage, Proc. Fifth Annual ACM
Symposium on Discrete Algorithms, 1994, pp. 659-
668.

[2] A. Aggarwal and J. S. Vitter, The Input/Output Com-
plexity of Sorting and Related Problems, Communica-
tionsoftheACM, 1988,31(9):1116-1127.

[3] L. Arge, The Buffer Tree: A New Technique for Op-
timal VO-Algorithms, Proc. 4th International Work-
shop on Algorithms and Data Structures (WADS),
1995, pp. 334-345.

[4] R. Barve, E. F. Grove, and J. S. Vitter, Simple Ran-
domized Mergesort on Parallel Disks, Technical Re-
port CS- 1996- 15, Department of Computer Science,
Duke University, October 1996.

[5] T. Cormen, Determining an Out-Of-Core FET De-
composition Strategy for Parallel Disks by Dynamic
Programming, in Algorithms for Parallel Processing,
IMA Volumes in Mathematics and its Applications,
Vol. 105, Springer-Verlag, 1999, pp. 307-320.

[6] T. Cormen and M. D. Pearson, Personal Communica-
tion.

[7] M. Kaufmann, S. Rajasekaran, and J. E Sibeyn,
Matching the Bisection Bound for Routing and Sort-
ing on the Mesh, Proc. 4th Annual ACM Symposium

343

on Parallel Algorithms and Architectures, 1992, pp.
31 -40.

[19] J. S. Vitter and E. A. M. Shriver, Algorithms for Par-
allel Memory I: Two-Level Memories, Algorithmica
12(2-3), 1994, pp. 110-147.

[8] M. Kunde, Block Gossiping on Grids and Tori: De-
terministic Sorting and Routing Match the Bisection
Bound, Proc. First Annual European Symposium on
Algorithms, Springer-Verlag Lecture Notes in Com-
puter Science 726, 1993, pp. 272-283.

[9] T. Leighton, Tight Bounds on the Complexity of Paral-
lel Sorting, IEEE Transactions on Computers C34(4),
1985, pp. 344-354.

[101 M. H. Nodine, J. S. Vitter, Large Scale Sorting in Par-
allel Memories, Proc. Third Annual ACM Symposium
on Parallel Algorithms and Architectures, 1991, pp.
29-39.

[111 M. H. Nodine, J. S. Vitter, Deterministic Distribution
Sort in Shared and Distributed Memory Multiproces-
sors, Proc. Fiph Annual ACM Symposium on Parallel
Algorithms and Architectures, 1993, pp. 120-129.

[12] M. H. Nodine and J. S. Vitter, Greed Sort: Optimal
Deterministic Sorting on Parallel Disks, Journal ofthe
ACM 42(4), 1995, pp. 919-933.

[13] V. S. Pai, A. A. Schaffer, and P. J. Varman, Markov
Analysis of Multiple-Disk Prefetching Strategies for
External Merging, Theoretical Computer Science,
1994, 128(2):211-239.

[14] M. D. Pearson, Fast Out-of-Core Sorting
on Parallel Disk Systems, Technical Report
PCS-TR99-35 1, Dartmouth College, Com-
puter Science, Hanover, NH, June 1999,
ftp://ftp.cs.dartmouth.edu/TR/TR99-
351 . p s . 2.

[151 S. Rajasekaran, Sorting and Selection on Interconnec-
tion Networks, DIMACS Series in Discrete Mathemat-
ics and Theoretical Computer Science 21, 1995, pp.
275-296.

[161 S . Rajasekaran, A Framework For Simple Sorting Al-
gorithms On Parallel Disk Systems, Proc. 10th Annual
ACM Symposium on Parallel Algorithms and Archi-
tectures, 1998, pp. 88-97.

[17] S. Rajasekaran, Selection Algorithms for the Paral-
lel Disk Systems, Proc. International Conference on
High Performance Computing, 1998.

[18] C. D. Thompson and H. T. Kung, Sorting on a Mesh
Connected Parallel Computer, Communications ofthe
ACM 20(4), 1977, pp. 263-27 1.

344

ftp://ftp.cs.dartmouth.edu/TR/TR99

