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Abstract—Analysis of range queries on spatial (multidimensional) data is both important and challenging. Most previous analysis

attempts have made certain simplifying assumptions about the data sets and/or queries to keep the analysis tractable. As a result, they

may not be universally applicable. This paper proposes a set of five analysis techniques to estimate the selectivity and number of index

nodes accessed in serving a range query. The underlying philosophy behind these techniques is to maintain an auxiliary data structure,

called a density file, whose creation is a one-time cost, which can be quickly consulted when the query is given. The schemes differ in

what information is kept in the density file, how it is maintained, and how this information is looked up. It is shown that one of the

proposed schemes, called Cumulative Density (CD), gives very accurate results (usually less than 5 percent error) using a diverse

suite of point and rectangular data sets, that are uniform or skewed, and a wide range of query window parameters. The estimation

takes a constant amount of time, which is typically lower than 1 percent of the time that it would take to execute the query, regardless of

data set or query window parameters.

Index Terms—Spatial data, range query, selectivity estimation, node access estimation, histogram-based estimation, R-trees.
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1 INTRODUCTION

SPATIAL databases are gaining importance and are
becoming prevalent in numerous applications [31].

Geographical Information Systems (GIS), image processing,
navigation/positioning, demography, epidemiology, ter-
rain analysis, mining, military planning and logistics,
computer-aided design, and robotics, are just a few of the
domains that can benefit from spatial databases. Efficient
storage, retrieval, and processing of spatial data to reduce
processing and I/O costs is crucial in these applications.

Analysis of the performance of spatial operations [31]
becomes even more essential with the choice of numerous
index structures [6], [7], [11], [22], [12], [28], [32], [29].
Performance analysis can help better understand the
suitability of a data structure for different input data sets
(both size and spatial distribution). Given a data set, we
could use analysis results to objectively choose between
different indexing alternatives. After choosing an index
structure, analysis results could then be used to efficiently
build/layout/fine-tune the structure within the purview of
its definition. Finally, analysis is extremely important for
query optimization. The cost and number of data items that
are retrieved by a query would be very useful to determine
the execution plan of a query for best performance.

There are several interesting queries that could be posed
to a spatial database. These include range queries (select-
ing items that overlap a given query window), nearest-
neighbor queries, joins, and other topological queries. Of
these, the range query is, perhaps, the most common, and
has been widely used as the subject of analysis in other

related studies [33], [8], [23], [34], [17], [35], [26] as well.
With range queries, one is interested in finding out how
many data items will be retrieved (selectivity) and what
will be the I/O complexity (number of nodes accessed in the
index structure) in servicing the query. These two
measures reflect the I/O and CPU processing costs that
would be incurred by the query, with the former factor
usually being more dominant. This paper focuses on
estimating (analyzing) the selectivity of range queries on
spatial databases. Our proposed techniques can also be
used to estimate the nodes that would be accessed in
servicing a range query in the associated spatial index
structure. We demonstrate this by using the packed R-tree
[17] as a case-study.

There have been several previous attempts at analyzing
R-tree performance for range queries [9], [33], [5], [7], [23],
[34], [35], [26], [17]. Most of these studies are either limited
by the kind of data sets that they can be applied to, or make
some simplifying assumptions along the way to keep the
model tractable. As a result, they can give inaccurate results
when the data sets deviate from such assumptions. Further,
many previous studies examine average case behaviors
(average the errors in estimation over numerous query
windows), and this may not necessarily reflect certain gross
errors for specific windows (and such windows could be
important for an application).

The underlying philosophy of the analysis techniques
presented in this paper is that they should make little or no
assumption about the data set. Any information that is data
set dependent should be drawn from the data set itself. As a
result, these techniques are universally applicable, regard-
less of the data set or the application that they are used for.
The common theme between these different techniques is to
use an auxiliary data structure, called the density file, which
maintains sufficient information (histograms) about the data
set that is necessary to conduct the estimation. The density
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file creation is a one-time cost. When the query is given, the
density file is “quickly” looked up to determine selectivity
and nodes accessed. There has been prior work [30], [24] on
using histograms for estimating query performance in
relational databases, but there are only a few forays [21],
[2] on such techniques for spatial/multidimensional data-
bases. Muralikrishna and DeWitt [21] is an early study that
has proposed a technique for building equi-depth histo-
grams for multidimensional point data sets. There has been
a recent study [2], concurrently undertaken with the work
that is presented in this paper, on different ways of
maintaining histograms for spatial databases. The differ-
ences between these studies are explained in Section 2.

This paper considers both point (sizeless and shapeless
objects) and rectangular data sets, and proposes five
analysis schemes for the former and two for the latter (the
rectangular schemes can be used for points as well without
any loss of generality). It should be noted that rectangles
can also be used to abstract more complex spatial objects (as
Minimum Bounding Rectangles), and the proposed
schemes can be used in such cases. These schemes differ
in what information is maintained in the density file, how it
is maintained, and how it is looked up for estimation. Using
a diverse (both real and synthetic, that are uniform or
skewed) suite of data sets and different query window
parameters (size, location and aspect ratio), it is shown that
one of our schemes (called Cumulative Density), gives very
accurate estimations for selectivity and nodes accessed for
each query window, with errors less than 5 percent. It gives
much lower errors than most of the previously proposed
techniques. It provides this accuracy at a (time) cost that is
less than 1 percent of the actual query execution time. The
storage overheads for maintaining the density file are
tolerable as well.

The rest of this paper is organized as follows: The next
section gives a quick overview of previous analysis
attempts on range query performance. Section 3 presents
the proposed analysis techniques for point and rectangular
data sets. Section 4 gives results from the analyses using a
spectrum of data sets and query windows. Finally, Section 5
summarizes the contributions of this paper and outlines
directions for future work.

2 RELATED WORK

Estimation of range query performance on spatial data has
been shown to be extremely important [3], [21]. Conse-
quently, there is a large body of literature on this topic. These
techniques, however, are limited either to the kind of data sets
that they can analyze (points, rectangles, etc.), and/or make
simplifying assumptions about the data set (uniform, skewed
following a certain rule, etc.) or query windows.

The first set of techniques [9], [33] make an assumption
about the data set being more or less uniformly distributed in
space. [9] presents the first known analysis of R-trees, by
transforming objects into higher dimensional space. Theo-
doridi and Sellis [33] uses the size of the query window to find
out how many leaf nodes will be covered by the query for the
uniform data set. The internal nodes that will be touched can
then be examined recursively to estimate the disk accesses.
Since these studies assume uniform distribution of the data,

they do not have to be concerned about the location of the
query window. These estimations can, however, become
inaccurate for skewed data sets.

Some other studies [8], [5], though not restricted to
uniform data sets, focus specifically on point data sets.
Faloutsos and Kamel [8] show that certain point data sets
behave as mathematical fractals and calculate the fractal
dimension of the data sets. Using this, they can find out the
number of disk accesses at each level of the R-tree.
However, this analysis is restricted to point data sets, and
also requires that the R-tree be well-built and the aspect
ratio of the MBRs of its nodes be close to 1.

Similarly, Proietti and Faloutsos [23] focus on region data
sets for their analysis. They show that certain region data
sets can be packed into MBRs having a quite uniform aspect
ratio, and the areas of these MBRs obey the REGAL law.
This observation is used to estimate the number of MBRs
intersecting the given query window.

Finally, there are studies [34], [35], [26], [17] which have
looked at both point and region data sets, that are both
uniform and skewed. Theodoridi and Sellis [34], [35] use the
concept of density (average number of data entries that
contain a given point) to analyze R-tree performance. The
density is calculated level-by-level, beginning at the leaf. This
technique assumes that the density is uniform within the
data set. The authors suggest that it could be extended to
nonuniform data sets, by splitting the spatial extent into
multiple regions, each of uniform density. This can, however,
become a nontrivial decomposition. Further, their technique
assumes that the node MBRs have unit aspect ratios.

With the bulk-loaded packed R-tree structure, Kamel
and Faloutsos [17] propose a simple formula to estimate the
number of pages (nodes accessed) that will be retrieved by a
range query, which is a function of the query window size
and the average size of the Minimum Bounding Rectangles
(MBR) of the R-tree nodes. This formula would apply to any
R-tree (built using any technique), as long as the MBRs of
the nodes are available. Since this technique does not take
query window location into account, it may not always be
accurate, though the accuracy may be acceptable in the
average case. Aref and Samet [4] later extended this model
for selectivity estimation of spatial joins. A probabilistic
model for different range query classes on spatial data
structures, that is relatively independent of the choice of the
data structure and data set, is conducted in [25]. This study
makes a couple of assumptions in deriving the model: all
query windows have unit aspect ratio, and all query
windows are either of the same area or request the same
number of data items. Such assumptions may not necessa-
rily be valid for real applications.

Most of the above techniques fall under what has been
characterized as parametric techniques [2], which try to
mathematically model the data based on certain assump-
tions. Spatial data sets are likely to be very diverse.
Consequently, not all of the above techniques can be used
to analyze the performance of all data sets. We believe that
an estimation technique should make little or no assump-
tions about the input data set. Any information that it
would need should come from the data set being analyzed
itself, and this information should be provided without
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adding significant overheads. This is the underlying
philosophy of this paper. Techniques adhering to this
philosophy would be universally applicable, regardless of
the data set or the application that it is being used for. These
techniques typically use auxiliary data structures, called
histograms, which partition the space into buckets and keep
track of how many data items fall within each bucket.

A very recent study [2], undertaken concurrently with
this work, has examined different ways of constructing
histograms for spatial databases to estimate selectivity, and
has proposed a novel scheme (called MinSkew) that is
shown to give fairly accurate estimations. There are several
similarities between some of their suggestions and the
techniques presented here. For instance, our DH scheme
uses the equi-area partitioning suggested in [2], with the
difference that it does not optimize empty spaces/regions.
Our DHC scheme is intended for such optimizations. The
NDH scheme discussed here is almost identical to the
R-tree index-based grouping suggested in [2]. However,
there is a key difference between the two studies. Except for
the NDH scheme, all the others in this paper use equi-width
(equi-area) and nonoverlapping buckets unlike the ones
used in [2]. As a result, it is rather straightforward in our
schemes to find the relevant buckets for a query window.
Query estimation is thus fast and has very low memory
requirements. Estimation for the schemes in [2], on the
other hand, requires a search to find the relevant buckets.
As a result, those schemes try to keep the number of buckets
relatively small so that they fit in main memory. The
techniques detailed here do not have such restrictions, and
we can potentially go for a large number of buckets for
better accuracy. We are able to maintain nonoverlapping
buckets even with rectangular data items, using a novel
idea (derived from simple geometric properties of rectan-
gles) whereby a rectangular object is counted in exactly one
bucket. To our best knowledge, no previous study has
pursued such an idea.

Another common observation about all the above studies
is that the estimation accuracy is evaluated using average
case behavior (i.e., numerous query windows are fed to the
model and the error in estimation is averaged over all these
queries). While this may be a viable approach to discuss the
overall quality of different modeling techniques, it is
important to note that there can be gross inaccuracies for
certain specific windows (and such windows may be
important workloads for an application). Instead, one
should try to conduct studies with different query window
sizes and locations, and try to understand the accuracy of
the estimation for each of these windows.

3 ANALYSIS TECHNIQUES

There are two main costs in searching for objects intersect-
ing a rectangular query window. The first is the cost of
computing the intersection between the data entries and the
query window. The second is the cost of retrieving the items
from the disks. The number of data items that will be
retrieved (called the selectivity (s)) has a direct bearing on
both these costs. Further, the retrieval cost will also depend
on the number of nodes (n) in the index structure that will be
touched by the query. In the rest of this discussion, we

present a set of techniques for estimating the selectivity for
point and rectangular spatial data sets. We also illustrate
how these techniques can be used to estimate the number of
nodes in the index structure that will be accessed, using the
packed R-tree structure [17] as a case-study.

The R-tree [11], [18], proposed as an extension to the
B-Tree structure, is one of the most popular spatial data
structures. Many variants of the R-Tree, such as Rþ -Tree
[32] and R�-Tree [6] have been proposed. They differ in the
algorithm that is used for insertion, specifically in splitting a
node of the tree when its subtree is filled. They attempt to
give better balanced (and efficient) trees by dynamically
adapting to the insertion pattern/sequence. However, these
structures can become inefficient when the database of
spatial items is static (and known a priori). In such cases,
one should use bulk-loading techniques rather than insert
item by item to build the data structure. Roussopoulos and
Leifker [27] use packed R-trees for such static databases to
lower response times. Further, Kamel and Faloutsos [17]
suggest using Hilbert value (a linearization technique for
multidimensional space [10], [13]) as the index for the bulk-
loaded R-tree. This would help optimize (localize) the
number of nodes traversed in serving a query. Typically,
such R-trees are built in a bottom-up fashion, level by level.

There are three main reasons for using bulk-loaded,
packed R-trees to illustrate node access estimation. First,
our research project [1] is exploring efficient database
support for geographic information (GIS), and the data sets
in this domain are usually static. Many other applications
use static spatial data sets as well, and our techniques
would apply to all these domains. Second, packed R-trees
have high space utilization (close to 100 percent) compared
with their dynamic counterparts. This reduces the size of
the tree, localizes (optimizes) the nodes traversed in serving
a query, and reduces response times. Finally, without loss
of generality, bulk-loaded R-trees help us keep our analysis
of node access estimation relatively simple. It is for these
reasons that other similar studies [17] analyzing the
performance of R-trees have used bulk-loaded bottom-up
R-trees as well. The reader should note that the use of a
packed R-tree to illustrate node access estimation does not
in any way mitigate the generalization of our schemes. One
could very well feed the bounding boxes of the nodes in the
index structure to the selectivity estimation process to find
the number of nodes that will be accessed. In fact, our
rectangle data set schemes follow this approach. The bulk-
loaded R-tree, that we use, is built from a sorted list (based
on Hilbert ordering as suggested in [17]) of the data items in
a bottom-up fashion.

For the data sets, we focus on points and rectangles,
which capture interesting facets of spatial information.
Points are shapeless/sizeless objects, while this is not the
case for rectangles. Rectangles can also be used to
represent/abstract other objects (such as lines, polylines,
polygons, etc.). In such cases, the rectangles represent the
Minimum Bounding Box of the objects, and there needs to
be an additional step (called the refinement step) to process
the retrieved rectangles (from the filtering step) and find
out which ones actually pertain to the query. The
techniques presented here will then apply to an analysis
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of the performance of the filtering step. It has often been
argued that perhaps this is a more dominant cost of a range
query since it requires I/O.

3.1 Overview

Our techniques can be briefly summarized as follows: We
construct an auxiliary data structure (which we call the
density file) from the original data set, in addition to the R-
Tree at the time of building. This density file contains
sufficient information—how many data items are contained
in different regions/cells of the spatial extent—about the
data set. When a query is given, the density file is quickly
looked up to procure the necessary information. The size of
the density file, the time for constructing this file, and the
time for looking up the required information are the issues
that one needs to keep in mind, as will be discussed for each
technique. The techniques differ in what information is kept
in the density file, how it is kept, and how the information is
looked up. Some common symbols/definitions that are
used in the following discussion are given in Table 1.

3.2 Techniques for Point Data Sets

Point data has only position information, making them
easier to process. When a (rectangular) query window is
given, we need to find out how many points of the data set
fall within this window (selectivity). The leaf nodes that the
selected points fall on is determined by the Hilbert values of
the points. Subsequently, we use a recursive procedure to
find out how many internal nodes of the R-tree will be
accessed to get to these leaf nodes.

The common theme in the following schemes is to first
partition the spatial extent into grid cells in the same way
that is used to assign a Hilbert ordering (number) for the
data items [10]. The density file is then just a histogram of
the number of points that fall within a specific Hilbert
range. It is important for the reader to note that the Hilbert
order [10] (the level to which the spatial extent is recursively
broken down) will have an important effect on the size of
the density file as well as on the accuracy of the estimation.
The schemes differ in how the histogram is maintained
within the density file.

3.2.1 The Density Histogram (DH) Scheme

The DH scheme uses a straightforward representation of
the density information. The density file contains the
number of points that fall within each Hilbert grid cell,
and the file is maintained in increasing Hilbert cell order.
The Hilbert cell number can be used as an offset into the file
to directly get the corresponding density (number of points
within this cell). The size of the file is thus dependent on the

number of grid cells, which in turn is a function of the
Hilbert order that is used to recursively break down the
spatial extent. For a given query window, the selectivity (s)
and number of nodes traversed (n) can be estimated as
follows.

Selectivity. The query window is broken down into a
sequence of Hilbert ranges that it covers, based on the Hilbert
order that has been used to create the density file. There is an
approximation being made here in aligning/extending the
query window to the boundaries of grid cells. It should also
be noted that there is a sequence of (potentially noncontig-
uous) Hilbert ranges that are generated from the query
window. These ranges are looked up in the density file to find
out how many points fall within each range (density), and
then the densities are added up to get the selectivity. To make
it more efficient, we keep cumulative densities (sum of
densities from grid cell 0 until that grid cell) in the density
file, so that finding the density within a range will require
looking up just two values (the ends of the range) and
subtracting one from the other.

Nodes Accessed. We could find the number of nodes
accessed by a query if we had some knowledge about which
leaf nodes the selected data items reside on. It is rather easy
to figure out this information from the packed R-tree
algorithm since the leaf nodes contain data items sorted by
Hilbert order (and each leaf node contains the same number
of data items). As with the selectivity method, we can break
the query window into Hilbert ranges. For a range, we
could look up the density (specified as a cumulative density
from grid cell 0) information for the lower end of the range.
This number divided by the number of data items pointed
to by a leaf node would specifically identify the leaf node
where the range starts. Similarly, the density information
for the end of the range can be used to find out on which
leaf node the range ends. Once we identify all the leaf nodes
that will be accessed, we can use the same method to
recursively move up the tree to find out what nodes will be
accessed at each level.

3.2.2 The Density Histogram Compression (DHC)

Scheme

The problem of the DH Scheme is the storage space. For
each Hilbert cell, a (cumulative) density value is stored in
the file, regardless of whether there are any data items
present in that cell or not. The size of the density file grows
exponentially with the Hilbert order. Note that the higher
Hilbert order would be the level of accuracy most of the
time. Hence, if one wants to tolerate a relatively low
estimation error, then the DH scheme would not be a very
scalable alternative. The DHC scheme tries to compress the
density file information of the DH scheme with the same
underlying algorithms used to find selectivity and nodes
accessed.

When examining the density file of the DH scheme
carefully, one can find characteristics that can help optimize
space requirements. First, when the Hilbert order is high,
the spatial extent gets divided into very small grid cells,
with a large number of cells having no data items within
them. Second, neighboring grid cells tend to have similar
densities, and densities change more gradually from one
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cell to another. This is usually the case for data sets with
points uniformly distributed in the spatial extent. Even for
skewed data sets, we can have regions within which the
grid cells have similar densities.

These observations suggest that we can reduce the size of

the density file by compressing the storage required to

represent neighboring grid cells with similar densities. The

scheme can be explained as follows: We initially start with

the density file of the DH scheme. We compare the density

of each set of four consecutive grid cells (recall that Hilbert

ordering recursively breaks down the space into four

regions). If they are similar (close enough), then they are

represented by only one entry in the density file. The

“similarity” check is done by comparing the coefficient of

variation (standard deviation divided by mean of the

density values for the four cells) with a certain threshold.

If the value is less than the threshold, then the four cells are

combined into one value, else they are left as four cells. This

procedure is then recursively carried out for the next lower

level of the Hilbert order, etc. The recursion stops when

either there are no more grid cells to be merged, or when

the number of grid cells to be considered is just one.

This scheme is expected to lower the size of the density

file compared to the DH scheme, albeit at a higher cost

required to build the density file. Furthermore, finding the

offset in the file for a particular grid cell is no longer

straightforward as in the DH scheme. A slightly higher

price has to be paid during estimation. We use a simple

index structure to improve the performance of the lookup

operation on the compressed density file. Other than this,

the selectivity and nodes accessed estimation algorithms are

the same as for the DH scheme.

3.2.3 The Node-Based Density Histogram (NDH)

Scheme

Another way of reducing the size of the density file is by

keeping the information at a slightly coarser level. In the

DH scheme, the information was maintained at a grid cell

granularity, thus (potentially) giving a finer level of

accuracy in estimating both selectivity and nodes accessed.

Instead, we maintain the file on an R-tree leaf node basis

(i.e., one entry in the density file for each leaf node of the

tree, with each entry containing the Hilbert range of the

cells covered by that node together with the number of data

items within that range). The selectivity and nodes accessed

are calculated as follows.

Selectivity. Convert the query window into a sequence

of Hilbert ranges as before. Next, we find the leaf nodes

that intersect these ranges from the density file. Experi-

mentally, we have found that using a binary search

within the density file to find the leaf node that intersects

with the start of the first range, and then a linear search

from that point for subsequent ranges works rather well.

For each intersecting leaf node, we approximate the

number of data items that would be retrieved as x

percent of the items within that node, where x is the

percentage of the node’s Hilbert range that intersects the

query window. This approximation assumes that the data

items within a leaf node are uniformly distributed within

the Hilbert range of that node. By summing this number

over all the intersecting leaf nodes, we get the required

selectivity.
Nodes Accessed. The same algorithm used in the

DH scheme, which calculates the internal nodes that are
accessed after the leaf nodes have been identified, is used
here as well.

It should be noted that the density file of NDH

essentially maintains equi-depth histograms [21]. Each

bucket corresponds to an R-tree node, with the fanout

determining the depth of the bucket. A similar scheme has

been used as one of the options in a more recent study [2].

However, since the points are sorted by Hilbert order in our

approach, there is not much (consecutive buckets may at

most have one Hilbert value in common) overlap between

the buckets.

3.2.4 Comparing Point Data Set Schemes

Before we proceed to rectangular data set schemes, we give
a brief summary of the three schemes for points in Table 2.
We use four criteria in discussing each scheme. These
include the size of the auxiliary data structure (density file)
that they use, the time for creating/building this auxiliary
data structure (which is a one-time cost incurred at the time
of building the R-tree), the time taken for estimating the
selectivity and nodes accessed, and the accuracy of the
estimation.

DH requires a large density file (4h � Se), which grows

exponentially with the Hilbert order. DHC compresses this

file, based on the similarity between successive grid cells. The

degree of compression would depend on the variation of the

number of data items that fall in successive grid cells, together

with the threshold that is used to qualify this variation as

significant to warrant extra storage. The density file size is

independent of Hilbert order for the NDH scheme, clearly

making it a winner in terms of the size criterion. The density

file size in NDH (Ns

F � Se � 2) is directly proportional to the

number of leaf nodes in the corresponding R-tree, with each

leaf node requiring two Hilbert values (to indicate a range).

To create the density file in the DH scheme, we need to

histogram the points based on which Hilbert grid cell they

fall on. While one could use this straightforward approach

for creating the density file, the performance may be

rather poor since successive data items may fall on

different grid cells (if the data set is not sorted) resulting

in a lot of I/O operations (the file can get quite large).

Instead, we first generate the Hilbert values for the points

(which would be done in any case to build the bottom-up

R-tree), sort them based on these values, and then

histogram them to avoid thrashing effects. The creation

of the density file for DHC would be even more expensive

since the density file has to be compressed based on the

coefficient of variation. NDH takes very little time to build

the auxiliary structure. Since the points are already sorted

based on Hilbert order (to build the R-tree), we can just

examine the two extreme points of each leaf node to find

out its range.
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In all three schemes, the first step in estimation is to
break up the given query window into a sequence of Hilbert
ranges. This would itself take up time that is dependent on
the Hilbert order. Next, selectivity is determined by
examining the density file for these ranges. This is a
straightforward lookup (using the Hilbert value as an
offset) of the density file for DH. DHC requires extra time
since there is another index structure within this file to get
to the information. NDH requires binary and some linear
searches within this file to find intersecting leaf nodes,
which perhaps is the more expensive of the three.
Subsequently, estimation of nodes accessed uses the same
algorithm in all three schemes.

Finally, the estimation accuracy is largely dependent on
the Hilbert order that is used for linearizing the data set and
breaking down the query window for all three schemes. For
the DHC scheme, it is also dependent on the threshold that
is used to detect variation in densities. In the NDH scheme,
the accuracy of the selectivity is dependent on the spatial
distribution of the data points contained within each leaf
node of the R-tree.

3.3 Techniques for Rectangle Data Sets

Rectangle data sets pose a more difficult problem than point
data sets since they contain size information in addition to
position information. The point data set schemes may not
necessarily work for rectangle data sets because of this extra
dimension to the problem. One could think about extending
two-dimensional Hilbert space into three or more dimen-
sions (as was mentioned in [17]), but that would need a high
amount of computation. Furthermore, it is not straightfor-
ward to convert a query window into three-dimensional
Hilbert ranges while still maintaining the spatial relation-
ships, i.e., objects that fall into those ranges should spatially
intersect the query window.

We propose two schemes below that use simple
geometrical properties of rectangles to address this pro-
blem, while still providing nonoverlapping buckets. There
are a couple of differences from the previous schemes. In
the point data set schemes, Hilbert space and ordering was
used to grid the spatial extent. In the following two
schemes, we do not really care because there is no need to
get a linearization of the spatial extent. Instead, the spatial
extent is gridded into cells by just drawing a number of
vertical (columns) and horizontal (rows) lines. A cell is then
denoted by its row and column. The density file is looked

up by using a two-dimensional offset (a row and column
number).

The second difference from the point schemes is in what
each entry of the density file contains. We cannot keep just
the center point information of the rectangular items (i.e.,
each cell contains the number of rectangles whose center
points fall within that cell) since this would loose the size
information. Neither can we record how many rectangles
intersect each cell since we would end up double/multiple
counting the rectangles in estimation. In the following two
schemes, we illustrate what we need to maintain within
each grid cell to avoid the multiple counting of rectangles
without sacrificing size information.

3.3.1 The Incremental Density (ID) Scheme

In this scheme, the density file keeps track of the
information on an incremental basis. Specifically, for each
grid cell we keep two values: a) the number of rectangles
whose bottom side/edge falls (intersects) on that cell
(DSði; jÞ), and b) the number of rectangles whose top
side/edge falls (intersects) on that cell (DEði; jÞ). This is
shown pictorially on the right side of Fig. 1 for the
rectangular data set on the left side.

Selectivity. We can find out how many rectangles
(Nðqxl; qyl; qxh; qyhÞ) intersect with a query window
ðqxl; qyl; qxh; qyhÞ (the lower-left corner is ðqxl; qylÞ and
the upper-right corner is ðqxh; qyhÞ) as follows: Let
Sðxl; yl; xh; yhÞ denote the number of rectangles that start
in region ðxl; yl; xh; yhÞ (i.e., whose lower edges intersect
with this region), and let Eðxl; yl; xh; yhÞ denote the
number of rectangles whose top edges intersect with this
region. We can then use the following equation to
calculate N :

Nðqxl; qyl; qxh; qyhÞ ¼ Sðqxl; 0; qxh; qyhÞ
ÿ Eðqxl; 0; qxh; qylÿ 1Þ:

ð1Þ

Fig. 2 illustrates this observation with an example. The query
window covers ð1; 2; 2; 3Þ, for the data set with 11 rectangles
numbered a through k. For this example, Sð1; 0; 2; 3Þ ¼ 11
(i.e., all the 11 rectangles), and Eð1; 0; 2; 1Þ ¼ 4 (i.e., rectan-
gles a, b, c, and d). So, Nð1; 2; 2; 3Þ ¼ 11ÿ 4 ¼ 7.

We determine S and E, from DS and DE, respectively,
as follows: Let RSð½xl; xh�; jÞ represent the number of
rectangles whose lower edges intersect with grid cells of
row j between columns xl and xh.
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RSð½xl; xh�; jÞ ¼ DSðxl; jÞ þ
Xxh
i¼xlþ1

MAXðDSði; jÞ

ÿDSðiÿ 1; jÞ; 0Þ:
ð2Þ

For example, in Fig. 1, RSð½0; 2�; 0Þ ¼ 3þ ð5ÿ 3Þ þ 0 ¼ 5,

which means that there are five rectangles whose lower

edges intersect with grid cells (0,0), (0,1), and (0,2). The

following equation can then be used to calculate S,

Sðxl; yl; xh; yhÞ ¼
Xyh
j¼yl

RSð½xl; xh�; jÞ: ð3Þ

Similarly, let REð½xl; xh�; jÞ represent the number of

rectangles whose top edges intersect with grid cells of row j

between columns xl and xh. We can then calculate E from

DE as follows:

REð½xl; xh�; jÞ ¼ DEðxl; jÞ þ
Xxh
i¼xlþ1

MAXðDEði; jÞ

ÿDEðiÿ 1; jÞ; 0Þ
ð4Þ

Eðxl; yl; xh; yhÞ ¼
Xyh
j¼yl

REð½xl; xh�; jÞ: ð5Þ

RS and RE, however, are not always accurate. For
example, let us look at a situation where two neighboring
rectangles have edges that fall on adjacent columns of a row
as shown in Fig. 3a. This scheme will not differentiate
between this and a single large rectangle (shown in Fig. 3b).
In both cases, this scheme will result in the same density
information. The CD scheme, to be discussed next, does not
suffer from this inaccuracy.

Nodes Accessed. We cannot use selectivity information
directly to estimate the nodes accessed (as in the point data
set schemes) because the density information is not
maintained as Hilbert grids, i.e., after the selectivity is
obtained, we do not know the Hilbert values for the data
items. Although it is possible to divide the universe using
Hilbert order as in the point data set schemes, we would
need extra storage and longer computation times (the above
equations for selectivity are based on simple geometric
properties of rectangles, and there needs to be a level of
translation before they can be used if we used Hilbert
gridding). Instead, we use an alternate solution using the
property that each node in the R-tree can itself be
represented by a rectangle in the spatial extent (the
Minimum Bounding Rectangle covering its subtree). It is
thus sufficient to examine if this MBR intersects the query
window to find out if this node would be accessed. As a
result, we maintain the MBRs of all the R-tree nodes (this
doubles the space requirement if we use the same degree of
gridding as with the selectivity), and use these MBRs
themselves as the data for the above selectivity procedure.
This would directly give us the number of MBRs (nodes)
that intersect the query window.

It should be noted that since we are not using Hilbert
grids, or making any other assumptions about the way the
R-tree is built, the ID scheme is independent of the
algorithm that is used to create the R-tree.

3.3.2 The Cumulative Density (CD) Scheme

The main problem with the ID scheme is in the time it takes
for estimation, and to a lesser extent the inaccuracy that was
pointed out in Fig. 3. We need to go through each row
between 0 and qyh, and check the columns in the ½qxl; qxh�
range to serve a query ðqxl; qyl; qxh; qyhÞ. This becomes
expensive with a fine level of gridding (which would
increase accuracy), or with large query windows. There is a
similar problem with the point data set schemes, and we
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have used a cumulative density information to alleviate this
problem there. This technique can be used here as well,
which gives us the CD scheme.

We grid the spatial extent as in the ID scheme and we

keep four values for each cell ði; jÞ:

. BS0ði; jÞ (if BSði; jÞ is the number of rectangles
whose lower-left corners lie in the range ð0; jÞ to
ði; jÞ, BS0ði; jÞ ¼

Pj
x¼0 BSði; xÞ);

. BE0ði; jÞ (if BEði; jÞ is the number of rectangles
whose lower-right corners lie in the range ð0; jÞ to
ði; jÞ, BE0ði; jÞ ¼

Pj
x¼0 BEði; xÞ);

. US0ði; jÞ (if USði; jÞ is the number of rectangles
whose upper-left corners lie in the range ð0; jÞ to
ði; jÞ, US0ði; jÞ ¼

Pj
x¼0 USði; xÞ);

. UE0ði; jÞ (if UEði; jÞ is the number of rectangles
whose upper-right corners lie in the range ð0; jÞ to
ði; jÞ, UE0ði; jÞ ¼

Pj
x¼0 UEði; xÞ).

The selectivity Nðqxl; qyl; qxh; qyhÞ can then be calculated

as follows:

RSð½xl; xh�; jÞ ¼ BSðxh; jÞ ÿBEðxlÿ 1; jÞ; ð6Þ

Sðxl; 0; xh; yhÞ ¼ BS0ðxh; yhÞ ÿBE0ðxlÿ 1; yhÞ; ð7Þ

REð½xl; xh�; jÞ ¼ USðxh; jÞ ÿ UEðxlÿ 1; jÞ; ð8Þ

Eðxl; 0; xh; yhÞ ¼ US0ðxh; yhÞ ÿ UE0ðxlÿ 1; yhÞ; ð9Þ

Nðqxl; qyl; qxh; qyhÞ ¼ Sðqxl; 0; qxh; qyhÞ
ÿ Eðqxl; 0; qxh; qylÿ 1Þ
¼ BS0ðqxh; qyhÞ ÿBE0ðqxlÿ 1; qyhÞ
ÿ ½US0ðqxh; qylÿ 1Þ
ÿ UE0ðqxlÿ l; qylÿ 1Þ�:

ð10Þ

Instead of examining all density values in the range
½xl; xh�, we need to access only two values for calculating S,
and two for E. Thus, the estimation of selectivity and nodes
accessed (a similar method of calculating selectivity with the
MBRs of the R-tree nodes as explained with ID can be used to
find out nodes accessed) require constant (four disk accesses

and three arithmetic operations) time. This time does not
depend on the query window size nor the level of gridding
(we can use a very fine level for higher accuracy without
compromising on estimation time). Further, the CD scheme
avoids the inaccuracies shown in Fig. 3 of the ID scheme.

3.3.3 Comparing Rectangle Data Set Schemes

A quick summary of the two rectangle data set schemes is
given in Table 3, comparing the size of the density file that is
generated, the time taken for generating this information, the
time taken for estimation, and the accuracy of the estimation.

The size of the density file in both schemes (2 � 2 � Se � 4h

for ID and 2 � 4 � Se � 4h for CD) depends on the number of
grid cells (4h). ID uses two variables for each cell, while CD
requires four. In addition to selectivity, the density
information has to be maintained for the node MBRs for
node access estimation, which doubles the size of the
density file. The time taken for generating this density file is
proportional to the number of grid cells (for the rectangles
and for the MBRs of the R-tree nodes). The CD scheme takes
at least twice the time taken by the ID scheme since it
maintains twice the number of variables with each cell and
its variables are cumulative variables.

Estimation is expensive for the ID scheme since it is
proportional to the size of the query window as well as the
level of gridding. On the other hand, the CD scheme is
independent of these factors and takes a constant time for
selectivity and node access estimation. The CD scheme is
also expected to be more accurate than ID because
cumulative information can lower estimation errors in
some cases as was illustrated earlier.

It is also interesting to note that a point data set can be
viewed as a special class of rectangular data (of size 0).
Consequently, the rectangle data set schemes can be used to
estimate selectivity and nodes accessed of point data sets as well.
We have used the CD scheme for estimation of point data
sets in the following evaluation studies and compare it with
the point data set schemes.

3.4 Dynamically Updating Density File

While we have discussed the approach for creating the
density/histogram information for all the above schemes,
we would also like to point out that any updates
(inserts/deletes) to the data set can also be reflected in
the density information.
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In NDH, where the histogram directly corresponds to
the leaf nodes of the R-tree, updating an entry in the leaf
node only requires updating the corresponding bucket of
the histogram. When the update results in changing the
leaves of the index structure, then a similar redistribution
has to be performed for the histogram information as
well. The ID scheme requires touching only the grid cells
that are affected by the update, and is thus fairly efficient
as far as dynamic updates are concerned.

On the other hand, schemes such as DH, NDH, and CD
are a little more expensive since they cumulate the
information. One way of alleviating this cost is to not
reflect the changes to the density information immediately,
but to let them accumulate. At some time when there are a
large enough number of updates, to make a significant
impact on the accuracy of the estimation, they can be
carried out simultaneously to amortize the cost. In fact, this
approach can be used for all the schemes to keep dynamic
update costs fairly low.

4 EVALUATING THE ANALYSIS TECHNIQUES

To evaluate the different schemes described in the previous
section, we conduct extensive experiments with several
point and rectangle data sets, and several query windows.
These studies have been conducted on a 170 MHz SUN
Ultra Enterprise 1 server (the choice of the machine is
immaterial since we are comparing relative performance of
schemes on the same system). In the following discussion,
we briefly discuss the data sets considered, examine the
metrics/criteria used for comparing the schemes, and
present the results for specific query windows as well as
in the average case. Our schemes are also compared with
some of the previously proposed ones.

4.1 Data Sets

We have considered a wide spectrum of point and
rectangular data sets that are either uniformly distributed
in space or exhibit some kind of clustering (we use the
terms clustered and skewed synonymously in this paper).
Some of them have been obtained from actual/real data sets
(such as the Tiger [19] data), while others have been
synthetically generated. The reader is referred to [16] for the
results on all the data sets and, in this paper, we present
results for the following data sets:

. Four point data sets:

- SUP: Synthetic Uniform Points, containing
240; 000 points,

- SCP: Synthetic Clustered Points, with 240; 000
points clustered around one location,

- TOP: Topological Point data set taken from [25],
with 478; 786 points following a rather regular
pattern (points are arranged in regular rows with
significant gaps between successive rows), and

- CFD: Computation Fluid Dynamics data set
taken from [20], with 208; 688 points that are
clustered.

. Four rectangular data sets:

. SUR: Synthetic Uniform Rectangles, with
500; 000 uniformly distributed rectangles,

. SCR: Synthetic Clustered Rectangles, with
240; 000 rectangles that are clustered around
the center,

. PAR: a data set containing the MBRs of rivers of
Pennsylvania from the TIGER database [19],
with 30; 218 rectangles, and

. CAR: a data set containing the MBRs of the
streets of California from the TIGER database,
with 248; 643 rectangles.

A pictorial view of these data sets is given in Figs. 4 and 5.
We have considered various query windows whose

locations are randomly picked with the condition that they
cover both sparse and clustered regions of the given spatial
data set. These query windows also have different aspect
ratios and sizes (1 percent, 5 percent, 25 percent, 50 percent,
and 100 percent). The reader is referred to [16] for more
detailed information about these queries. We believe that
the chosen data sets and query windows capture suffi-
ciently diverse workloads with interesting properties to
stress the pros and cons of different schemes.

4.2 Metrics/Criteria

We have developed a bulk-loaded packed R-tree based on

Hilbert order [10], [13] for each of the above data sets, which

we use for comparison. We use six criteria for discussing

the pros and cons of each scheme:

. Selectivity Estimation (s). This measures the accuracy
of the scheme in estimating the number of data items
retrieved for the specific query. It is expressed as a
percentage error with respect to the number of items
retrieved by the query on the actual R-tree.

. Selectivity Estimation Time (st). This measures the

time taken by a scheme to estimate selectivity for the

specific query. It is expressed as a percentage of the

time to execute the query on the actual R-tree.
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. Node Access Estimation (n). This measures the

accuracy of the scheme in estimating the number

of nodes accessed/touched in serving the specific

query (which is an indication of the I/O costs). It is
expressed as a percentage error with respect to the

number of nodes touched by the query on the actual

R-tree.
. Node Access Estimation Time (nt). This measures the

time taken by a scheme to estimate the number of

nodes accessed/touched by the specific query. It is

expressed as a percentage of the time to execute the

query on the actual R-tree.
. Density File Size (d). This is a measure of the storage

overhead (in bytes) to maintain the density informa-

tion required by each scheme. It is expressed as a

percentage of the storage taken by the actual R-tree.
. Time for Building Density File (dt). This measures the

time taken by a scheme to create the density file. It is
expressed as a percentage of the time taken to build
the actual R-tree.

The reader should note that a relatively small s and n is

preferable with low st and nt. Though one would like to

have a low dt and d as well, it should be noted that dt is a

one-time cost, and d may not be a big issue these days with

ever increasing disk storage capacities (as long as density

files are not larger or become a large fraction of the actual

data set/R-tree).

4.3 Point Data Set Results

Fig. 6 shows a part of the results for the different schemes with

the point data sets. We present representative results from

four query windows for each data set. We have obtained

results for each scheme using different levels/orders
(h ¼ 5; 6; 7; 8; 9) for the density file. Instead of presenting all
those results, for each workload-scheme combination, we
present only those for the lowest level/order (since this will
have the lowest d and dt) which gives a satisfiable degree (less
than 5 percent error) of accuracy. In case, none of these levels
gives an error lower than 5 percent, then we give the results
for h ¼ 9. Consequently, different schemes could have
different orders/levels (h) for a particular workload (a
scheme with a higher h usually indicates that it does not do
as well as a scheme with a lower h). The reader is referred to
[14] for actual values if needed.

Accuracy (s and n). As can be expected, the DH and
NDH schemes give better accuracy with higher h. This is
specifically the case for selectivity estimation since these
schemes align the query window to the grid cells. In
general, higher h will reduce the change in query window
that is needed, giving higher accuracy. There are certain
situations where a finer level of gridding can result in a
higher percentage change in an area of query window
compared to a coarser level of gridding (see [16] for some
examples). The overall trend, however, indicates that there
will be a higher level of accuracy with these schemes with
higher h. In fact, one could theoretically hypothesize that, at
very high h, these schemes should come very close to the
actual R-tree results. But, we find that the estimated
selectivities and nodes accessed are much lower. After a
closer examination, we found that this is due to some points
falling directly on cell boundaries. Such points are histo-
grammed into only one of the buckets to avoid double-
counting (see [16]). Consequently, a query which is aligned
to that grid cell and does not include the Hilbert value
assigned to the point, will not count the point in its
estimation. This also explains why the TOP data set (where
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several points could lie on grid cell boundaries because of
the nature of the data set) shows unstable results. Despite
this, we find that these inaccuracies are not a major problem
from our experiments, and we can still get less than
5 percent error in most cases.

In terms of node access estimation, NDH uses the same
technique as the DH scheme, and gives similar results. For
selectivity estimation, NDH assumes that data items are
uniformly distributed in space within each leaf node (or at
least at the nodes which are at the boundaries of a Hilbert
range covered by the query). However, this assumption
does not seem to hurt accuracy very much. This is, perhaps,
because of two factors. The assumption is made only for the
nodes that partially overlap a Hilbert range covered by a
query, and this number is relatively low (as a percentage)
compared to the total number of selected data items.
Furthermore, even clustered data sets have some semblance
of uniformity within small/isolated regions (such as those
covered by a single leaf node of the R-tree) and can be
approximated accordingly.

The performance of the DHC schemes with three
different thresholds (0.6, 1.2, and 1.8) for the coefficient of
deviation are given in Fig. 6. It can be seen that accuracy for
thresholds of 1.2 and 1.8 is not acceptable in several cases,
and only 0.6 comes close to the other schemes.

As mentioned in the previous section, the rectangle
schemes can be used for point data sets as well. In the
tables, we have shown the results for the point data sets
using CD. We can observe that CD gives similar accuracies
as DH for selectivity estimation and higher precision for
node access estimation. This is because it uses the actual
R-tree information (MBRs of nodes) to estimate this
information. So, any approximation made in determining
selectivities is not carried over to node estimation.

For most combinations of data sets and query windows,
the DH scheme estimations were less than 10 percent error
at order/level 6, and less than 5 percent error at order/level
8 [16]. A similar observations holds for the DHC, NDH, and
CD schemes as well. Hence, level 8 seems to be an
appropriate operating point.

Apart from the nature of the data set (uniform/
clustered) and level of gridding, three other factors have
an important effect on the accuracy of these schemes,
namely, the location of query window, the size of the query
window, and the size of the data set. The query window
(0.10,0.61,0.96,0.90) covers a relatively sparse area of the
CFD data set. Consequently, the number of nodes accessed
for this window is quite low. This small value can result in a
higher percentage error (even though the deviation from
the value may not be much in absolute terms). Similarly, a
window located on a dense area may cause more aberra-
tions when the window is aligned to the nearby grid cell
boundaries, resulting in a larger number of data points
being included/excluded than actual. A small query
window can also give low selectivities and node accesses,
and even a minor deviation from the actual number can
mean a large percentage error. These factors, together with
the impact of data set size on estimation accuracy, have
been studied in [16].

Estimation Time (nt and st). For some of the data sets,
the estimation times for the DH and NDH schemes are quite
expensive relative to the actual time taken for serving the
query. All the benefits of estimating R-tree performance will
be lost, if the estimation time is as high as 20 to 50 percent of
the query time itself. The higher the order (for better
accuracy), the higher is this time since the query window
needs to be broken into several finer Hilbert ranges, and
these ranges need to be looked up in the density file. The
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estimation times for the DHC scheme are even worse since
it needs to look up index information to get to the
appropriate densities. However, as the selectivity becomes
larger, the estimation time as a percentage of the query time
gets smaller, and these schemes may not be as bad in such
cases. The CD scheme is clearly a winner for this criteria
because it takes a constant amount of time regardless of the
data set and order/level. As a result, the CD estimation
time never exceeds even 1 percent of the query execution
time for any of the workloads.

Density File Size and Creation Time (d and dt). The
theoretical observations in the previous section about the
density file size are well borne out by the experimental
results. The size quadruples in the DH scheme as we move
to the next order/level. However, for the data sets
considered, the size goes only as high as 10 percent of the
space occupied by the actual R-tree (and that too in only a
few cases). Given that space is not really a severe problem
(as important as time), the DH scheme may not be a bad
choice. Moving to the DHC scheme, we observe that the

savings due to compression is not very significant. At low
thresholds, there are not many nearby grid cells to merge,
and the index that is necessitated for this file can offset any
gains due to compression. There is some saving in DHC for
certain clustered data sets (like CFD), where there are
regions in space with little or no points that can be merged.
The CD scheme requires nearly eight times the size of the
DH scheme. This is because there are four variables stored
for each grid cell (DH requires only one), and we need to
maintain the information for not only the data points, but
also for the node MBRs. In terms of d, the NDH scheme is
the winner. The space that it requires is directly propor-
tional to the number of R-tree nodes, and this is much
smaller than the actual space in bytes taken by the R-tree
(much less than 1 percent). Furthermore, this size is
independent of the order/level of gridding.

The DH, DHC, and NDH schemes require that the
Hilbert values be assigned to all the data points and then
externally sorted before they are histogrammed. DHC
requires additional time for compression, which seems to
be significantly higher from the results. The CD scheme
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does not require Hilbert values to be generated or sorted,
but it requires additional time to calculate the cumulative
information. These two factors more or less compensate
each other, and the density file creation for CD takes
roughly the same time as DH/NDH.

4.4 Rectangular Data Set Results

As in the point data set results, Fig. 7 shows the results of
the ID and CD schemes on the four rectangular data sets
with different query windows.

The ID scheme has significant errors for selectivity and
node estimation even at level 9. In fact, we need to go higher
than level 12 to get errors within 5 percent. This is because
of approximation errors that were explained earlier using
Fig. 3. The estimation times are very high as well, and in
many cases even exceed the actual query execution times on
the R-tree. These results suggest that ID is not a feasible
approach, and we do not discuss it further.

On the other hand, the CD scheme appears to give
remarkably accurate results for both selectivity and node
access estimation. We need to go only up to levels 8 or 9 to
get the errors within 5 percent. It achieves this goal with a
constant estimation time that is usually much less than
1 percent of the actual query execution time. The reader
should note that the storage taken by the density file for CD
(for DH and ID as well) is independent of the data set size.
It is purely a function of the level/order. So, the storage (in
bytes) taken by the density file at level 8 for CD in the PAR
data set is the same as the storage taken at level 8 in the SUR
data set. The reason why the percentages are quite high for
PAR is because the data set is itself quite small (the
corresponding R-tree is smaller) compared to CAR. The
same argument holds for the density file creation time. In
summary, as the data set size grows larger, the space
overhead of the CD scheme gets smaller (as a percentage).
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4.5 Comparison with Previous Research

In summary, the point data set results clearly show that CD
(and DH to a certain extent) does the best, giving fairly
accurate results (less than 5 percent error for CD) in a short
time (in CD it takes much less than 1 percent of the query
execution time for estimation). CD is the clear winner in the
case of the rectangle data sets. For the data sets that were
considered, we need to go only up to levels 8 or 9 for these
schemes, and the density storage overheads are not overly
demanding at these levels. As the data sets get larger
(which is when analysis is really meant to be useful), the
storage overhead as a percentage of the data set size
becomes smaller.

We have also compared node access estimation accuracy
(n) of CD with three previously proposed analysis
techniques for point data sets and rectangular data sets in
Figs. 8 and 9. The reader is referred to [14] for actual values
and to [16] for details on the formulae/algorithms used in
estimation for the previously proposed techniques. We have
presented the comparisons over several query windows
(the average case results, which have been used in previous
studies, are presented in the next section) to bring out the
quirks of the different techniques.

The KF93 scheme in [17] gives reasonable accuracy for

uniform point data sets. Since it does not consider the

location of the query window, it gives higher errors (some

even larger than 100 percent) for some windows on

clustered data sets. The FK94 scheme in [8] gives a little

better accuracy for uniform data sets compared to [17]. But,

it is equally worse for the clustered data sets. If the query

windows on such data sets were to be focussed on the

clustered area (as an application may demand), these

schemes would give gross approximations. The MinSkew

scheme [2] is not very accurate for the SUP data set, but is

better than [17], [8] for the other point data sets.
For the rectangle data sets, the KF93 [17] and PF99 [23]

schemes give similar accuracies. The TS96 scheme in [34]

gives a little better accuracy, coming closer to the actual

R-tree results. This is because in our implementation of this

scheme, we actually go through the data set to find the

density of the region covered by the query window (though

this is not really practical) as explained in [16] instead of

assuming uniform densities. MinSkew does better than

KF93 for the clustered rectangular data sets (SCR and CAR)

as expected.
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Fig. 8. Comparing accuracy of node access estimation for point data sets with previous research (a) SUP (universe = [0,0,1,1]): QueryA = [0.18, 0.10,

0.53, 0.81], QueryB = [0.10, 0.13, 0.81, 0.48], QueryC = [0.45, 0.45, 0.95, 0.95], and QueryD = [0.69, 0.05, 0.98, 0.91]. b) SCP (universe = [0,0,1,1]):

QueryA = [0.18, 0.10, 0.53, 0.81], QueryB = [0.10, 0.13, 0.81, 0.48], QueryC = [0.45, 0.45, 0.95, 0.95], and QueryD = [0.69, 0.05, 0.98, 0.91]. (c) TOP

(universe = [0,0,9,1,1]): QueryA = 0.05, 0.90, 0.30, 0.98], QueryB = [0.10, 0.96, 0.90, 0.99], QueryC = [0.20, 0.92, 0.60, 0.98], and (d) CFP (universe =

[0,0,1,1]): QueryA = 0.05, 0.90, 0.30, 0.98], QueryB = [0.10, 0.96, 0.90, 0.99], QueryC = [0.20, 0.20, 0.70, 0.70], and QueryD = [0.52, 0.10, 0.81, 0.96].



The CD scheme gives the best accuracies in most cases.

Our schemes take the query window size, location, and data

set distribution into consideration in making the estima-

tions. They neither assume any particular distribution

(uniform, clustered, clustered following a certain rule,

etc.) for the data set, nor do they make any assumptions

about the size and location of query window.

4.6 Average Case Accuracy

One of the points we are trying to make is that it is

important to examine individual estimation errors with a

spectrum of different query windows as we have done in

the previous experiments. Averaging the errors over a large

number of windows as many previous studies have done

[2], [17], [34], [23] could hide some of the gross inaccuracies

for certain specific query windows (and these windows

could be important for a particular application). To address

any concerns that the reader may have with this approach

(and any concerns that the reader may have about the

importance/representativeness of the query windows

considered until now), we have also run numerous query

windows (1,000) over the data sets, and present the average

(mean) estimation error for the CD (level 9), KF93 and

MinSkew schemes in Table 4, together with the minimum,

maximum, and standard deviation of these errors. The

reader should note that the maximum error captures the

results for just one of the query windows, and this is usually

for a window which has very low selectivity. A very low

selectivity can result in large percentage errors even if the

absolute number is not significantly different from the

actual value (for instance, an estimate of 2 for a selectivity of

1 will give 100 percent error). When many query windows

have low selectivities/node accesses in the workload, the

corresponding mean errors are high as well. If Ei is the

estimation for the actual value Xi, then the mean error

percentage (�dd) is calculated as

�dd ¼
PN

i¼1 Ri

N

and the standard deviation of error percentage (�d) is

calculated as
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Fig. 9. Comparing accuracy of node access estimation for rectangle data sets with previous research. (a) SUR (universe = [0,0,1,1]): QueryA = [0.18,
0.10, 0.53, 0.81], QueryB = [0.10, 0.13, 0.81, 0.48], QueryC = [0.45, 0.45, 0.95, 0.95], and QueryD = [0.69, 0.05, 0.98, 0.91]. (b) SCR (universe =
[0,0,1,1]): QueryA = [0.10, 0.10, 0.45, 0.81], QueryB = [0.20, 0.50, 0.91, 0.85], QueryC = [0.40, 0.12, 0.90, 0.62], and QueryD = [0.65, 0.10, 0.94, 0.96].
(c) PAR (universe = [79.901, 39.7198, -76.8602, 41.6181]): QueryA = [-79.901, 39.7198, -79.189, 40.854], QueryB = [-78.268, 39.7198, -77.040,
40.387], QueryC = [-78.882, 40.254, -77.654, 40.854], and QueryD = [-79.189, 40.788, -78.206, 41.388]. (d) CAR (universe = [-118.9440, 32.8062,
-117.6480, 34.8232]): QueryA = [-118.7, 33.5, -118.134, 34.648], QueryB = [-118.8, 33.4, -117.652, 33.966], QueryC = [-118.7, -117.891, 34.809], and
QueryD = [-118.2, 33.5, -117.731, 34.82].



�d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1ðRi ÿ �ddÞ2

N

s
;

where Ri ¼ jEiÿXij
Xi
� 100. Those with a Xi ¼ 0 are excluded

from these calculations.
For the query windows, we use two workloads (uni and

skew). In both these workloads, the aspect ratio of the query
window is uniformly varied between 0.33 to 3.0, and the
size is varied between 0.1 percent to 25 percent of the spatial
extent. In uni, the center point of the query window is
uniformly distributed within the spatial extent.

Our skew workload is based on the hypothesis that the
region with more data will draw more queries. We first
obtain a spatial Cumulative Distribution Function (CDF) of
the points (in point data sets) or center-points (in rectangle
data sets) of the target data set. The workload picks the
center points of the query windows from the probability
density function determined by this CDF.

Many previous studies have used workloads similar to
uni to conduct average case experiments, and we feel that
skew may be a better approximation to actual workloads (we
can only hypothesize at this point, and we plan to
investigate workload characterization in our future work).
Regardless of the workload used for average case estima-
tion, we still find that CD gives very good estimates
(typically less than 5 percent error) over all the data sets as
in the previous individual query estimations. Its results are
significantly more accurate than the corresponding estima-
tions by KF93 and MinSkew in most cases.

4.7 What Level/Order Should We Use?

There is an issue with regard to the proposed schemes that
has not yet been investigated, which is important to all
histogram/density based techniques. This is regarding how
we can decide on the level/order for the density file (the
query window parameters are not known at the time the

density file is created). A larger level/order usually
improves the accuracy of estimation, albeit at a higher
storage cost. Previous histogram-based studies [2] have
used an experimental approach with average case studies of
different data sets to find a good operating point. We use a
similar approach, and the average errors used with
numerous (1,000) query windows randomly located at
different regions of the spatial extent for each of three
different sizes (0.1 percent, 1 percent, and 10 percent of the
spatial extent) is given in Fig. 10 for the CD scheme on four
real data sets. As expected, the average error decreases with
increasing levels, and the percentage error is lower with
larger query windows. Though the inferences that can be
drawn are data set dependent, we find that over all the data
sets that we have considered (including the ones presented
in [16], the errors become reasonably small (typically lower
than 5-10 percent) beyond levels 9 or 10. Knowledge of the
data set and/or possible query windows for the given data
set can help decide on a level in a better fashion than using
a workload with average case behavior. It should be again
noted that the estimation time for the CD scheme is
relatively independent of the level of gridding (unlike other
schemes [2]), allowing us to use a reasonably large gridding
level as long as storage for the density file does not become
a big issue.

5 CONCLUDING REMARKS AND FUTURE WORK

This paper has presented a novel set of schemes to analyze
range query performance on spatial data. Three of these
schemes can analyze point data sets, and the other two can
be used for both point and rectangular data sets. These
schemes make very little assumptions about the data set,
and use an auxiliary data structure (histograms), called a
density file, which can be constructed when the index
structure is created (one-time cost). When a query is given,
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TABLE 4
Estimation Errors in the Average Case for CD, KF93 and MinSkew



the density file is “quickly” looked up to get sufficient

information about the data set which is then used to

calculate the selectivity. We have also illustrated how this

information can be used to estimate the number of nodes

that would be accessed in the index structure using the

packed R-tree as a case-study.
With a diverse suite of real and synthetic data sets, which

fall under both uniform and skewed classifications, this
paper has shown that one of the schemes, called Cumulative
Density (CD), gives very accurate results with errors that are
much lower (usually less than 5 percent errors) than many

previously proposed analysis techniques. This accuracy is

obtained over a spectrum of query window sizes, locations,

and aspect ratios, and not just in the average case. This makes

the CD scheme more universally applicable. The estimation

with the CD scheme takes a constant amount of time (at most

four disk accesses and three arithmetic operations), regard-

less of data set or query window parameters. This time tends

to be typically lower than 1 percent of the time that it would

take to actually execute the query using an R-tree. As a result,

the CD scheme is very practical and would be extremely

useful in a query optimizer.
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Fig. 10. Impact of gridding level on accuracy of estimation using CD. The average error is shown for three query window sizes (0.1, 1, and 10 percent

of spatial extent). (a) CFD Selectivity, (b) CFD Node Access, (c) TOP Selectivity, (d) TOP Node Access, (e) CAR Selectivity, (f) Car Node Access,

(g) PAR Selectivity, and (h) PAR Node Access.



The CD scheme can be used to estimate the selectivity of
both point and rectangular data sets. It can be used for other
spatial objects, provided their bounding boxes are available
(in which case, it can be used to measure the cost of a
filtering step). In addition, the CD scheme can be used to
estimate the number of nodes accessed by a range query in
any index structure (not just an R-tree), provided the
bounding boxes of the nodes of the structure are made
available. We can use these bounding boxes as input to the
selectivity procedure of CD to find out the number of nodes
that would be accessed in the index structure.

This paper has opened interesting directions for future

research. While the techniques presented here could be

used for multidimensional data sets, there is a concern of

the space required to maintain the histograms. However,

the CD technique is still promising since its estimation costs

remain constant. We plan to characterize the workload

(data sets, query window parameters, etc.) of different

spatial databases for a better choice of the gridding level,

which could also help us address the storage issue. We are

trying to find out if the proposed schemes can be extended

(or new ones can be developed along the lines of what has

been presented here) to more complicated queries, such as

spatial joins. Finally, we would like to incorporate these

schemes into a spatial database query optimizer.
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