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ABSTRACT

Developing models that simulate the behavior of different types of
interacting biological cells can be a very time consuming and er-
ror prone task. CompuCell3D is an open source application that
addresses this challenge. It provides interactive and customizable
visualizations that help a user detect when a model is producing
the desired behavior and when it is failing. It also allows for high
quality image generation for publications and presentations. Com-
puCell3D uses the Python programming language which allows for
easy extensions. Examples are provided for performing graph anal-
yses of cell connectivity.

Index Terms: J.3 [Computer Applications]: Life and Medi-
cal Sciences—Biology and Genetics; D.3.2 [Programming Lan-
guages]: Language Classifications—Very high-level languages

1 INTRODUCTION

Developmental biology is a fascinating subject and provides signif-
icant challenges for computational science. The fact that each of us
began as a single cell and developed into trillions of cells, produc-
ing a breathing, moving, thinking organism should be a source of
wonder. Many of the underlying processes for this development are
not unique to humans, however; life on this planet is, fortunately,
very diverse and many developmental processes are common.

Since the discovery of the structure of DNA in the 1950s, bi-
ological research has, quite understandably, been focused on the
molecular level. While this has led to tremendous insights, it has
inadvertently lessened the importance of the cell as a structural unit.
And yet, experimental biology is still observed at the multi-cell
level. This is where, for example, we see cells move, divide, ad-
here, secrete, aggregate, communicate and die. It therefore seems
logical to conduct computational biology at a multi-cell level as
well. Sydney Brenner, a Nobel laureate in Physiology or Medicine,
has stated [10]:

I believe very strongly that the fundamental unit,
the correct level of abstraction, is the cell and not the
genome.
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Wolpert [14] offers a fascinating story for nonspecialists about
the lives of cells, explaining mitosis, growth, gastrulation, cancer,
and much more.

We provide an overview of CompuCell3D (CC3D; compu-
cell3d.org), a software application to simulate the behaviors of gen-
eralized cells. Our focus in this paper is on the visualization of
those cells and their connectivity with each other. CompuCell3D is
primarily used to develop models for multi-cellular biology, how-
ever, it is also used for non-biological models, as we will see.

Another topic that we discuss is the Python programming lan-
guage and the key role that it plays in CompuCell3D.

2 COMPUCELL3D

CC3D [8][12] is an open source software application to simulate
models that have generalized cells as their fundamental objects.
Users can download the source code and build it themselves or
download binaries that are ready to run. The application comes
with several example models. Documentation and a community fo-
rum are accessible from the web site.

All CC3D models are based on the more general Glazier-Graner-
Hogeweg (GGH) mathematical model [3]. GGH is defined on a
uniform lattice domain and each generalized cell is a spatially de-
fined contiguous subset of pixels (voxels) on the 2D (3D) lattice. A
2D lattice can be either square or hexagonal (with 3D analogues).
Therefore, for relatively small lattices, rendered cells can be quite
pixelated. Each generalized cell shares a common cell index (σ)
and is of a defined cell type (τ ). There will be very few cell types
compared to the large number of cell indices. For example, in the
human body, while there are trillions of cells, there are on the order
of a few hundred cell types.

GGH uses an energy-based formalism to describe cell behaviors.
It evolves cells using a (local) energy minimization algorithm with
a Boltzmann acceptance function that simulates a constant temper-
ature. The effective energy (H) is defined as follows:

H =
∑

i,j

J(τ(σi), τ(σj))(1− δ(σi, σj))+

∑

σ

λvol(σ)(v(σ)− Vt(σ))
2 + ... (1)

where i, j are neighbor lattice sites and σ and τ were defined above
(cell index and cell type). The first sum in H calculates the adhe-
sion energy between neighboring cells. Higher adhesion energies
result in cell-cell repulsion whereas lower adhesion energies cause
cells to adhere. The second sum in H represents a volume conserva-
tion constraint. This term will cause cells to reach a user-specified
target volume and is defined in CC3D as a plugin. There are numer-
ous plugins available in CC3D, each one contributing to a particular
behavior of a cell, e.g. volume, surface area, polarity, etc.. More
details about GGH can be found in the literature [12][11]. Most
of the code base for CC3D implements the GGH algorithm and is
written in C++. However, Python is also used extensively.
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The CC3D graphical user interface (GUI) application is depicted
in Figure 1. CC3D is built on an open source software stack
that includes: Python (scripting), numpy (numerics), Qt and PyQt
(GUI), SWIG (wrapping C++ code in Python), and the Visualiza-
tion Toolkit (VTK; also wrapped in Python). VTK is well-known
to the scientific visualization community. It uses a pipeline model
to build a visualization: data → filter → mapper → actor →

render. With dozens of filters available, there is considerable flex-
ibility in creating a visualization, as we shall see.

CC3D is a multi-threaded application inside the Python inter-
preter, allowing the simulation to run while a user operates the GUI.
In addition to making interactive changes to the visualization, it is
also possible to steer the simulation by changing model parame-
ters. Python provides a very flexible and extensible environment.
Developers can rapidly prototype new ideas for visualizations, for
example. But more importantly, users can create extremely flexible
models by writing their own Python steppables. A Python step-
pable is simply a Python module that gets executed inside the GGH
algorithm. The user can specify how frequently it is invoked during
a simulation.

In addition to providing the flexibility of writing Python step-
pables that affect the model, CC3D also makes it possible for users
to write Python-wrapped VTK scripts. These will allow custom
visualizations to be rendered in the GUI. Template scripts are pro-
vided to help users get started, just as we provide template step-
pables.

Figure 1: CC3D application.

3 EXAMPLE SIMULATIONS

We present three example simulations from CC3D. Two are of bi-
ological models and the third is non-biological, but demonstrates
visualization techniques that are relevant to biology.

3.1 Cell sorting

Cell sorting is a biologial phenomenon whereby cells of a particular
cell type adhere to one another (or to another cell type) to varying
degrees, leading to certain patterns. CC3D provides several exam-
ple models of cell sorting (both 2D and 3D). By changing the ad-
hesion energies between cell types, we can simulate different cell
sorting behaviors. Previously, we reported on the extensive variety
of patterns from a parameter sweep of the 2D cell sorting model [5].
In Figure 2, we show four snapshots in time from one such 2D cell
sorting simulation. (Note that CC3D simulations have Monte Carlo
steps (MCS) as units of time.) The parameters of the model were
chosen so that the less cohesive noncondensing type of cells engulf
the more cohesive condensing type. The latter tend to form clusters
and eventually form a single central cluster. The default visualiza-
tion for 2D cells is to color all cells of the same cell type with a

user-specified color (Figure 3) and to draw a boundary line around
each cell (also with a user-specified color). Another option is to
render cells as glyphs (Figure 4), possibly scaled by volume (note
that we use ”volume” as a cell attribute in CC3D; it refers to ”area”
for 2D cells). The boundaries of the 2D cells are still visible, but
this too is optional. Glyphs can also be used for 3D simulations,
as we shall see in the next example. When there are a very large
number of cells, low-resolution glyphs can be used to speed up the
rendering step.

Figure 2: Four snapshots of a 2D cellsort simulation.

Figure 3: GUI for changing colors of cell types.

Figure 4: Cells represented as circular glyphs.

If a user includes a plugin that tracks neighbor cells in their
model, CC3D will have access to all neighbors of each cell. More-
over, access to the entire list of cells and their neighbor lists will
be available from Python. As a result, a Python steppable can be
written that accesses all cells’ neighbors, giving the user consider-
able control for fine-tuning a model. It also makes possible a graph
analysis of cell-neighbor connectivity which could lead to metrics
for determining the state of a simulation, as has been demonstrated
elsewhere in a different context [9].
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To perform a graph analysis, we use NetworkX [4], an open
source Python-based software package for creating and analyzing
networks. While not a part of CC3D proper, it demonstrates the
power of Python’s extensibility. A user can simply install Net-
workX into their Python environment and thereby make it available
to a CC3D steppable. Moreover, a Python plotting package, mat-
plotlib [7], can also be installed and used to easily draw graphs de-
fined in NetworkX. To demonstrate, we performed a graph analysis
of cell neighbors for the 2D cell sorting simulation. Some results
for each of the four snapshots are listed in Table 1. The connected
components is perhaps the most meaningful graph measure to serve
as a metric for the simulation’s state.

Figure 5 shows plots of the graphs for MCS=20 using a spring
layout of the nodes. Figure 6 are plots of the same graphs, but using
the cells’ centers of mass as positions for the nodes.

The following code snippet is from the NetworkX Python script
that retrieves relevant information for an undirected graph, G1, that
represents the neighbor connectivity for cells of a particular cell
type.

G1.number_of_nodes()

G1.number_of_edges()

max(nx.degree(G1).values())

len(nx.connected_components(G1))

Figure 5: Spring layout of cell neighbors connectivity graph for con-
densing (left) and noncondensing (right) cells (MCS 20).

Figure 6: Position layout (cells’ centers) of same graphs in Figure 5.

Table 1: Graph analysis for 2D cell sorting (193 cells).

Cell Type (count) MCS # edges max deg # conn comp biconnected

condensing (103)

20 196 7 3 False

1020 260 9 2 False

1960 281 9 1 False

9040 327 11 1 True

noncondensing (90)

20 117 5 9 False

1020 135 6 6 False

1960 148 7 2 False

9040 175 7 1 True

3.2 Liver lobule

The Virtual Liver is a research project of the US Environmental
Protection Agency that seeks to develop and test computer models

to estimate the potential of chemicals to cause chronic diseases in
the human liver [13]. The basic functional unit of the human liver
is a hexagonal-shaped structure called the hepatic lobule. The lob-
ule contains a large central vein, a network of blood vessels (called
sinusoids), portal venules at the vertices of the hexagon, and hepa-
tocyte cells that make up the bulk of the liver mass. Each of these
components have a different cell type in CC3D. Fig. 1 shows a 2D
slice during the simulation of a liver lobule model. In the model,
hepatocytes (beige colored) grow in between the sinusoids from the
hexagon boundary inward; hepatocytes in the process of growing
(pre-mitosis) are colored white.

Three-dimensional renderings of the liver lobule are shown in
Figures 7-9. Figure 7 show isocontours for each hepatocyte cell
(each cell id), together with a single contour of the entire sinusoid
network (isovalue = sinusoid cell type), and another single con-
tour of the surrounding portal venules. In Figure 8, we use two
different types of glyphs (ellipse and superquadric) to represent the
(fully formed) hepatocytes, but continue to use isocontours for the
growing hepatocytes (colored white). In the left image, the glyphs
have no orientation; whereas in the right image, they are oriented
according to a simple vector field that emanates from the center of
the lobule. Figure 9 shows a final rendering that re-incorporates
the vasculature and inserts cell nucleii (small spherical glyphs). We
also show a single growing hepatocyte cell rendered as an isocon-
tour in Figure 10. In all three figures, we insert clipping planes into
the VTK pipeline to reveal the inner structures of the lobule.

Figure 7: Contours for individual hepatocytes.

Figure 8: Nonoriented (left) and oriented (right) glyphs for hepato-
cytes, together with contours of growing hepatocytes.
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Figure 9: Liver lobule with mixture of glyphs, contours and cutting
planes.

Figure 10: Single growing hepatocyte cell embedded in the lattice.

3.3 Foams

While the primary use of CC3D is to simulate models of cell be-
havior for developmental biology, recall that the GGH algorithm
operates on generalized cells. In this example, we show results
from foam simulations [1] where foam bubbles are the cells. For a
dry foam simulation, there is only one cell type (bubble); for wet
foams, there are two (bubble and water). Foams can undergo a pro-
cess called coarsening in which some bubbles grow, others shrink
and disappear, causing the number of bubbles to decrease over time.
Coarsening is also found in metallic grains and polycrystals.

CC3D provides example models for foams. Figure 11 is an im-
age from a 2D dry foam simulation, showing the bubble boundaries
and circular glyphs scaled by bubble area. Also shown is an image
from a graph analysis that highlights those bubbles (nodes) with an
area smaller than neighboring bubbles. This provides a good pre-
diction of which bubbles will be eliminated.

Figure 12 shows the progression of a 3D dry foam coarsening
simulation, using semi-transparent contours of the bubbles. Fig-
ure 13 depicts two different renderings of a 3D wet foam simula-
tion. On the left, we contour individual bubbles (cell ids) and render
opaque surfaces. On the right, we eliminate those bubbles that in-
tersect the lattice boundary and render only the interior bubbles,
semi-transparently. Figure 14 show the progression of a 3D wet
foam coarsening simulation using this second technique.

4 MODEL FABRICATION

As a final example, we present a model of a 3D tumor and a
surrounding vasculature network [11]. Figure 15 shows three
snapshots from the simulation. Because this model was still in
its development phase, the lattice domain was relatively small
(100x100x160). This created challenges for creating presentation-
quality visualizations. Fortunately, VTK’s smoothing filters helped

Figure 11: 2D foam: bubble boundaries and area-scaled glyphs (left);
graph analysis (right) showing nodes (red) with bubble volume less
than each of its neighbor’s.

Figure 12: Semi-transparent renderings of 3D dry foam coarsening.

considerably. Figure 16 shows a zoom-in of the tumor’s necrotic
core before smoothing and after. During the development of this
model, we also had an opportunity to fabricate it using a 3D printer.

Fab labs [2] are, in some ways, the manufacturing analogue to
the open source software movement. Digital fabrication has be-
come much more economical in recent years which has spurred a
growing interest from a variety of people – industrial designers, en-
gineers, musicians, and sculptors, to name a few. Products range
from practical, industrial widgets to whimsical, artistic creations.
Fab labs offer a variety of machines, including rapid prototyping
and other 3D printers, lathes, various cutters, and more. Indiana
University is in the process of creating its own fab lab and we were
fortunate enough to have access to a 3D printer.

Using one of VTK’s Writer objects, we were able to write a
stereo lithography (STL) file of the 3D tumor model. The STL
model captured contours of cell types, with cutting planes to re-
veal an inner necrotic core of the tumor (Figure 17). Since part
of the vasculature was discontinuous, we needed to manually in-
sert artificial (spherical) connectors into the model. Generating a
3D physical model provides an interesting manipulative object to
demonstrate at CC3D workshops and to use in K-12 school class-
rooms and public outreach settings.

5 RELATED WORK

When considering related work to CC3D, one must distinguish be-
tween the code that simulates the cells (the GGH algorithm) and
the GUI that performs the visualization. We will address only the
latter, as the former has been addressed in the literature. Since we
use VTK as our primary visualization library, it would seem rea-
sonable to adopt an existing VTK-based visualization application.
ParaView [6] is one such open source application, from Kitware,
the same company that develops VTK. The reasons we chose to
develop our own GUI for CC3D is (1) we can customize the visual-
ization choices to fit our application and (2) we need to provide syn-
chronized, interactive visualizaton and co-processing for a running
simulation. If we discover that ParaView or any other VTK-based
application can help meet these two criteria, we would seriously
consider adopting it.
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Figure 13: Comparing contouring and rendering options.

Figure 14: Three snapshots of a wet foam simulation.

Figure 15: Three snapshots from the 3D tumor simulation.

Figure 16: Applying a smoothing filter to the tumor’s necrotic core.

Figure 17: Tumor model from a 3D printer.

6 CONCLUSION

We have provided an overview of CompuCell3D (CC3D), an open
source application for simulating and visualizing models of gen-
eralized cells, with applications in both biology and physics. The
fact that CC3D uses the lattice-based GGH model means that cells
have the potential to be quite pixelated when visualized. A vari-
ety of rendering options in CC3D, including the use of glyphs and
smoothed surfaces, have been demonstrated. CC3D uses the Visu-
alization Toolkit (VTK) as its primarily visualization library. VTK
offers a simple pipeline approach for rendering data and a rich set
of filters that can improve the final rendered image.

Although CC3D is written primarily in C++, we have extensively
incorporated the Python programming language as well. In addition
to the graphical user interface being in Python (PyQt), CC3D also
provides a mechanism for extending and fine-tuning a model via
Python steppables. A steppable can also create or modify visual-
izations.

Because Python is easily extensible, we were also able to demon-
strate how one could perform a graph analysis on cells’ neigh-
bors connectivity using the NetworkX Python package. We believe
this approach has the potential to define metrics for a simulation’s
progress and outcome.

We welcome ideas from and conversations with other researchers
in both the computational biology and visualization communities.
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