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†LIMOS, Nancy-Université, CNRS
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ABSTRACT

A biosensor is a bacterium that is genetically modified to pro-
duce fluorescent proteins when exposed to environmental pol-
lutants. In this paper, we investigate the possibility of estimat-
ing the concentration of environmental pollutants in a sample
by using non-specific biosensors. To do that, we first pro-
pose an experimental procedure allowing to obtain three-way
fluorescence data sets. The extraction of bio-sensor response
to changes in environmental pollutant concentrations will be
achieved by Candecomp/Parafac. This allows the estimation
of multiple environmental pollutant concentrations using cal-
ibration curves of biosensors.

Index Terms— multiway data, Candecomp/Parafac,
spectrofluorimetry, biosensor, environmental pollution

1. INTRODUCTION

In recent years, the bio-sensors have known a significant de-
velopment, because of the increasing awareness on the envi-
ronmental issues [1, 2]. Nowadays, there is a need to improve
risk assessment and/or evaluation of remediation technologies
by including qualitative and quantitative consideration on the
bio-availability of contaminants. For heavy metals (such as
cadmium), uncertainty in the relationship between total metal
concentrations and those available for uptake by possible bio-
logical receptors may lead to situations where risk is over- or
underestimated. Thus, qualitative and quantitative considera-
tions on the bio-availability of environmental pollutants ver-
sus ecological receptors are required. This motivates the de-
velopment of bacterial biosensors or whole-cell bio-reporters
designed for the detection of environmental (chemical, physi-
cal or biological) conditions. The design of a bacterial biosen-
sor consists in adding a reporter gene to the bacterium DNA
so that it synthesizes fluorescent proteins in response to the
presence of a stressing element. The biologists discovered
that bacteria that are resistant to some toxins have developed
a toxin detection mechanism. Thus, if the presence of the

This work has been supported by the French ANR program through grant
ANR-09-BLAN-0336-04.

toxin is detected, they activate their protection mechanism
and the genetic modifications enforce the production of flu-
orescent proteins by the bacteria. The fluorescent elements
are produced according to the toxin quantity detected by the
bacterium. Figure 1 shows a schematic diagram of a bacte-
rial biosensor and its components interacting to provide in-
formation on toxicity level. Biosensors have been developed
to react to a number of environmental pollutants. However,
one of the main limitation to their use results from the lack of
promoters specific to a particular environmental factor. This
is why current approaches, favored by microbiologists, aim
at developing specific promoters. The approach that we are
proposing in the HAESPRI project [3] is quite different since
it consists in fully exploiting the diversity of biosensor re-
sponses from which the relevant information can be recov-
ered through signal processing methods. In this paper, we

Fig. 1. Schematic diagram of bacterial biosensor

specifically address the problem of estimating the concentra-
tion of environmental pollutants in a sample by using non-
specific1 biosensors. Let us mention that this is a problem
which has not received a satisfying solution since available
methods only allow the concentration estimation of a single
pollutant, thus implicitly assuming that no other pollutant is
present in the sample. As far as we know, this paper pro-
vides the first attempt to solve the problem of jointly esti-
mating the concentrations of multiple environmental pollu-

1A non-specific biosensor is a biosensor responding to several environ-
mental factors.
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tants present in a sample. The reminder of the paper is orga-
nized as follows. In section 2, we present the experimental
approach for obtaining data allowing to estimate the pollu-
tant responses. Basically, it consists in performing a metered
addition for each pollutant possibly present in the analyzed
sample. Combining these metered additions with a controlled
concentration profile of the different biosensors yields three
way data arrays (one for each pollutant) admitting a Cande-
comp/Parafac (CP) decomposition. In section 3, some basic
notions related to the CP decomposition are recalled and the
uniqueness of CP decomposition of these data arrays is ad-
dressed. Performing the CP decomposition yields the three
factors representing respectively the fluorescence spectra of
each bacterium, the concentration of bacteria and the response
of each bacteria to the studied pollutant. Remarking that the
first value of the pollutant response corresponds to the pollu-
tant concentration, we state in section 4 the pollutant concen-
tration estimation as a minimization problem. The proposed
method is illustrated in section 5 by a numerical simulation.

2. GENERATING THREE-WAY FLUORESCENCE
DATA BY METERED ADDITIONS AND BIOSENSOR

CONTROLLED CONCENTRATIONS

A biosensor is producing a fluorescence signal s(λ) when
exposed to a given pollutant. For the sake of simplicity let us
consider the case of studying the response to two pollutants
only. It is worth noticing that the method can be extended
straightforwardly to a larger number of pollutants. We denote
by a(x) and b(y) the responses of a biosensor to two different
pollutants, where x and y are representing the pollutant con-
centrations. Throughout the paper, we will assume that these
individual responses, referred to as calibration curves are
available. In practice, they can be obtained through calibra-
tion experiments such as those reported in [1]. Suppose now
that a solution is containing these two pollutants with respec-
tive concentrations x0 and y0. Following [1], the fluorescence
is known to be proportional to the amount of bacteria denoted
c(z0), where the variable z0 is introduced for notational
homogeneity and whose meaning will be explained in the
sequel. Thus, the fluorescence signal emitted by the biosen-
sor is proportional to (a(x0) + b(y0))c(z0)s(λ). Supposing
that there are a number F of biosensor types marked with
different fluorophores and responding differently to these two
pollutants, the measured fluorescence signal can be written
as:

D(x0, y0, z0, λ) =
F∑

f=1

(af (x0) + bf (y0))cf (z0)sf (λ). (1)

In principle, the more biosensors are used, the better the es-
timation will be. In the simulation presented, we use two
biosensors (F =2) which is the minimum possible value. In
practice, this number is limited to F ≤ 4. It should be noted

that, as the model is additive with respect to the response
of the biosensors to the two pollutants, building a multidi-
mensional array by performing a metered addition of the two
pollutants will not produce an array having a multilinear CP
structure.To tackle this problem we propose to perform suc-
cessive metered additions of a single pollutant combined with
a controlled concentration variation of the different types of
biosensors. By performing a metered addition of the first pol-
lutant, we obtain a three-way data array model:

D1(x, z, λ) =

F∑
f=1

αf (x)cf (z)sf (λ) (2)

where αf (x) = af (x0 + x) + bf (y0). The quantity x is
representing the concentration variation of the first pollutant,
starting from the initial concentration x0. The variable z is
representing the number of different biosensor concentrations
considered in the experiment, z0 indexing the first concentra-
tion. Similarly, for a metered addition of the second pollutant,
we get:

D2(y, z, λ) =

F∑
f=1

βf (y)cf (z)sf (λ) (3)

with βf (y) = af (x0)+bf (y0+y). Clearly, equations (2) and
(3) express a CP decomposition of datasets D1 and D2 from
which the functions αf (x) and βf (y) can be recovered.

3. CP DECOMPOSITION OF THE DATA

Using tensor decomposition as a data analysis tool traces back
to psychometrics [4, 5]. Let us mention in particular the work
of Harshman [6] in the 70’s who proposed the ALS algorithm
for estimating the CP decomposition and who was the first to
give an uniqueness result. The most general result regarding
the CP decomposition uniqueness is due to Kruskal [7] who
showed that uniqueness is achieved under mild conditions
which are often met in practice. This is the reason explain-
ing the growing interest of this decomposition in the fields
of chemometrics [8] and signal processing [9]. Data mining
and neuroscience applications are also reported in [10]. How-
ever, the idea of using the CP decomposition to analyze the
response of bacterial biosensors, as proposed in [11], seems
novel. The reason for considering three-way data rather than
two-way data is mainly to uniqueness property of the CP de-
composition. Indeed, as mentioned in [12], an ICA method
applied tthese non negative data is likely to yield negative val-
ues. Similarly, the uniqueness of the NMF results cannot be
ensured. On the contrary, introducing a third dimension to-
gether with the non negativity of the dat result is unique non
diverging CP decomposition [13]. The CP decomposition of
a three-way array can be written as:

D =

F∑
f=1

αf ◦ cf ◦ sf = [[A|C|S]] (4)
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In (4), A, C and S are the matrices formed by the column
gathering of vectors αf , cf , sf , f = 1, . . . , F , respectively.
Denoting by kA, the Kruskal-rank 2 of the matrix A, the con-
dition of Kruskal [7] states that the model is identifiable if
kA + kC + kS ≥ 2F + 2. Assuming that the biosensors are
producing different fluorophores results in a matrix S having
full column rank. Similarly, provided that the number of dif-
ferent biosensor concentrations is greater than the number of
biosensors, C can be assumed to be full column rank. As
a consequence, identifiability is achieved if kA ≥ 2, that is,
over the considered pollutant concentration range, the biosen-
sor responses to a given pollutant are not collinear.

4. A MINIMISATION APPROACH TO
CONCENTRATION ESTIMATION

After performing the CP decompositions of the two datasets
D1 and D2, estimates of αf and βf are obtained. Ideally:

α̂f (x) =af (x0 + x) + bf (y0) (5)

β̂f (y) =af (x0) + bf (y0 + y) (6)

where af and bf correspond to the responses of the f -th
biosensor to the two different pollutants. Let us recall that
these responses are known through a calibration procedure.
The estimation of the initial concentration x0 and y0 can be
formulated as an optimization problem aiming at minimizing
the following least-squares criterion:

J (x0, y0) =
∑
f

(∑
x

(α̂f (x)− kf,x(af (x0 + x) + bf (y0)))
2

+
∑
y

(β̂f (y)− kf,y(af (x0) + bf (y0 + y)))2
)
. (7)

The minimization of (7) can also be thought as a maximiza-
tion of the intercorrelation between the estimated and cali-
bration functions over intervals x ∈ [x0, x0 + X] and y ∈
[y0, y0 + Y ], X an Y representing the maximum concentra-
tion values of the metered additions. In defining the criterion
(7), it was necessary to introduce the weights kf,x and kf,y
to take into account the fact that both the calibration and es-
timated curves are known up to a scale factor (because of the
scale indeterminacy). However, when the values of x0 and y0
are fixed, the criterion is quadratic with respect to kf,x and
kf,y and the values of kf,x and kf,y minimizing J admit an
explicit expression depending on x0 and y0. Thus the depen-
dence of J with respect to kf,x and kf,y can be removed. Let
us now turn our attention to the minimization procedure of
(7). As evidenced by numerical simulation in section 5 the
criterion (7) is neither convex nor unimodal. This is what led
us to adopt an exhaustive search approach over a grid, allow-
ing to describe the possible variations of (x0, y0). Finally,

2The Kruskal-rank of a matrix A is the maximum number ` such that
every ` columns of A are linearly independent.

it should be mentioned that some attention has to be paid to
the practical implementation of such an approach, since it re-
quires to interpolate the calibration functions for each possi-
ble value of (x0, y0) over grids which are compatible with the
range of variations of α̂f (x) and β̂f (y).

5. RESULTS

For the experiments presented in this section, to compute the
CP decomposition of the data, we used an optimized non-
negative ALS algorithm which can be found in the Matlab
N-way toolbox developed by Bro and Anderson [14]. This
section presents the results of the proposed approach when
applied to a numerical simulation aiming at reproducing the
three-way data as presented in section 2. Figure 2 shows
the simulated calibration curves resembling those presented
in [15] for biosensors responding to Cadmium (Cd) and Zinc
(Zn). These curves are defined on a high resolution grid. In
practice, they can be obtained by determining the response
of the biosensor for a limiting number of values of the pol-
lutant concentration and then interpolating the response on a
high resolution grid. Another possibility would consist in in-
terpolating the calibration curve on a grid starting at x0 and
having the same sampling sequence as the estimated signal
α(x). The synthetic data used in this example were corrupted
by an additive Gaussian noise to reach a SNR of 20 dB. Fig-
ure 3 shows the results of the CP decomposition of the dataset
D1. The first mode, shown on the first plot corresponds to the
estimated values of α1(x) and α2(x). The other two modes
correspond to the estimated biosensor concentration profiles
and spectra. Similar results are obtained when decomposing
D2 yielding estimates of β1(y) and β2(y). Figure 4 represents
the criterion J (x0, y0), which has a number of local minima
while the global minimum is located at coordinates (196, 431)
mMol, yielding the results of figure 5. The obtained results
show a good estimation of the metal concentrations since the
actual values are (195, 430) mMol. Obviously, the quality
of the estimation is influenced by the estimation accuracy of
the α’s and β’s which are themselves depending on the noise
level.

6. CONCLUSION

In this paper, an approach has been proposed for estimating
the concentration of multiple pollutants by using non-specific
biosensors. To overcome the problem coming from the addi-
tivity of the biosensor responses, we have proposed to use me-
tered additions coupled with varying concentration mixtures
of the biosensors. A three-way data array has to be gener-
ated for each pollutant. By performing the CP decomposition
of the data coupled with a minimization procedure, it is pos-
sible to estimate the pollutant concentrations. In its present
form, the algorithm assumes that the exact number and types
of pollutants in the sample are known. Future works will be
directed at studying how the procedure can be modified to
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cope with the partial knowledge of the pollutant types in the
sample. Currently, biosensors reacting to different environ-
mental pollutants are under design. In a nearby future, it is
expected to have operating biosensors available and to report
the results of the data processing corresponding to real bio-
sensor responding to environmental solicitations.
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Fig. 2. Calibration curves
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Fig. 3. Results of CP decomposition of the dataset D1
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