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The Pseudospectral Time-Domain (PSTD)
Algorithm for Acoustic Waves in

Absorptive Media
Qing Huo Liu, Senior Member, IEEE

Abstract—A technique based on the combination of
Fourier pseudospectral method and the perfectly matched
layer (PML) is developed to simulate transient acoustic
wave propagation in multidimensional, inhomogeneous, ab-
sorptive media. Instead of the finite difference approxi-
mation in the conventional finite-difference time-domain
(FDTD) method, this technique uses trigonometric func-
tions, through an FFT (fast Fourier transform) algorithm,
to represent the spatial derivatives in partial differential
equations. Traditionally the Fourier pseudospectral method
is used only for spatially periodic problems because the use
of FFT implies periodicity. In order to overcome this limi-
tation, the perfectly matched layer is used to attenuate the
waves from other periods, thus allowing the method to be
applicable to unbounded media. This new algorithm, re-
ferred to as the pseudospectral time-domain (PSTD) algo-
rithm, is developed to solve large-scale problems for acous-
tic waves. It has an infinite order of accuracy in the spa-
tial derivatives, and thus requires much fewer unknowns
than the conventional FDTD method. Numerical results
confirms the efficacy of the PSTD method.

I. Introduction

The finite-difference time-domain (FDTD) method has
been very successful in solving time-dependent partial

differential equations, including those arising from acoustic
wave propagation in inhomogeneous media. For acoustic
waves, one can start with either a second-order partial dif-
ferential equation for the pressure field, or a set of coupled
equations for the pressure and particle velocity fields. In
the second-order finite-difference method, the most com-
monly used FDTD method, both the spatial and temporal
derivatives are approximated by the central differencing
operator, resulting in an algorithm accurate to the second
order of spatial and temporal discretization ∆x and ∆t.

In spite of its simplicity and versatility, the FDTD
method requires a relatively large number of nodes (usu-
ally 10 to 20 nodes per minimum wavelength for a problem
of moderate size) in order to achieve a reasonably good ac-
curacy [1]–[3]. This can be attributed to its relatively large
linear phase error (i.e., the dispersion error), which accu-
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mulates rapidly with time [4]. If long-time solutions are
required or if the problem size increases, the grid density
(number of nodes per minimum wavelength) has to be in-
creased even further. Alternatively, higher order (e.g., the
fourth order) finite difference methods can be used to re-
duce this dispersion error [4].

Over the past two decades, another class of methods,
namely the spectral methods, have been developed and ap-
plied to solve partial differential equations in fields ranging
from fluid dynamics, weather prediction, to wave propaga-
tion (see, for example, [5], [6]). In contrast to the FDTD
method, which uses local approximation to the spatial
derivatives, the spectral methods use global functions to
approximate spatial derivatives. A major advance on spec-
tral methods was made in 1972 by Kreiss and Oliger [4]
and by Orszag [7] who used trigonometric functions and
Chebyshev polynomials to represent the derivatives. This
method, now known as the pseudospectral method [7], [8],
gains much popularity because of its superior accuracy
and efficiency achieved through the fast Fourier transform
(FFT) algorithm of Cooley and Tukey [9].

Another type of spectral method, the so-called k-space
method, was first proposed by Bojarski [10] for scalar
acoustic waves and later generalized by Liu [11], [12] to vec-
torial electromagnetic and elastic waves. Instead of solv-
ing the PDEs, the k-space method solves the time-domain
integral equation derivable from the PDEs and uses the
FFT algorithm to speed up the spatial convolution inte-
grals. With a similar efficacy as the Fourier pseudospec-
tral method (unfortunately not with the same popular-
ity), the k-space method is especially useful for scatter-
ing problems. For wave equations with smoothly varying
coefficients, both the Fourier pseudospectral method and
the k-space method can achieve an exact spatial deriva-
tive with a grid density of only two nodes per minimum
wavelength [4], [11], [12]. Fornberg has further developed
the idea of viewing the Fourier pseudospectral method as
a limiting case of infinite-order accurate finite-difference
method [13].

Unfortunately, due to the periodicity implied by the dis-
crete Fourier transform, both the Fourier pseudospectral
method and the k-space method, if applied to unbounded
media, suffer from the so-called “wraparound effect,” a
term used to describe the contamination of waves from
other periods at late time. Therefore, to avoid this prob-
lem, the Chebyshev pseudospectral method has to be used
[13], which inevitably increases the grid density require-
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ment to π nodes per minimum wavelength, and makes the
CFL stability condition more stringent.

The aim of this work is to extend a method recently pro-
posed for computational electromagnetics [14]–[16] to sim-
ulate acoustic waves in absorptive media [17]. This method
combines the conventional Fourier pseudospectral method
with the newly developed perfectly matched layer (PML)
by Berenger [18] to eliminate the wraparound effect. Al-
though a simple dissipative buffer zone has been used pre-
viously to reduce the wraparound effect [19], [20], it re-
quires a large portion of the computation domain to be
occupied by the buffer zone in order to reduce the reflec-
tions caused by the mismatch in wave impedances and ve-
locities in the adjacent layers of lossy media in the buffer
zone. In contrast, different layers of PMLs are matched,
giving a reflectionless interface between the domain of in-
terest and the PML buffer zone. The PML was first pro-
posed by Berenger [18] for electromagnetic waves. Chew
and Liu [21]–[23] prove that such a reflectionless PML in-
terface also exists for elastic waves in solids in spite of the
coupling between compressional and shear waves whose
velocities and impedances are different. Liu and Tao [24],
[25] further extend the PML to acoustic waves in absorp-
tive media. Other applications of PML to acoustic and
elastic waves can be found in [26], [27]. In a parallel devel-
opment similar to [14]–]17], the Chebyshev pseudospectral
method has been recently combined with the PML in [28],
[29] for electromagnetic scattering problems.

We first summarize the finite difference method and
Fourier pseudospectral method in Section II. Following
the similar formulation for electromagnetic waves, we de-
velop an algorithm, which has been referred to as the pseu-
dospectral time-domain (PSTD) algorithm, combining the
conventional Fourier pseudospectral method and PML in
Section III for acoustic waves in absorptive media. Sec-
tion IV presents numerical results in multidimensions for
the validation and applications of the PSTD method. For
convenience in the following discussions, FD will refer to
the second-order finite-difference method, and PS will refer
to the Fourier pseudospectral method.

II. FD and PS Methods

We summarize the finite difference and pseudospectral
methods for partial differential equations. More details can
be found in [4]–[8], [13]. To illustrate, we attempt to solve
a simple first-order hyperbolic PDE:

∂u(x, t)
∂x

+
1
c

∂u(x, t)
∂t

= 0, x ∈ [0, L], 0 ≤ t (1)

with a periodic boundary condition u(0, t) = u(L, t) and
an initial condition u(x, 0) = f(x) = eiωx/c. This PDE has
an exact solution:

u(x, t) = eiω(x/c−t). (2)

To solve this problem numerically using the FD and
PS methods, both space and time are discretized. Because

the difference between the two methods lies in the spatial
derivative only, our discussion will be limited to the spatial
discretization. If ∆x = L/Nx is used as the cell size and
xj = j∆x, j = 0, 1, . . . , Nx − 1, the second-order finite-
difference approximation of the derivative is:[

∂u(x, t)
∂x

]
FD

≈ u(x+ ∆x, t)− u(x−∆x, t)
2∆x

, (3)

with a local truncation error O(∆x2). On the other hand,
the PS method represents the derivative by a trigonometric
polynomial:[(

∂u(x, t)
∂x

)
PS

]
x=xj

=
1
L

Nx/2−1∑
m=−Nx/2

ikmũ(m)eikmxj ,
(4)

where km = 2πm/L, and ũ(m) is the Fourier series:

ũ(m) = ∆x
Nx−1∑
j=0

u(xj)e−ikmxj . (5)

Note that each of the discrete Fourier transforms in (4)
and (5) can be obtained efficiently by using a fast Fourier
transform algorithm [9] with the number of operations
O(Nx log2Nx). It is noted from the well-known Nyquist
sampling theorem that the derivative in (4) is exact as long
as ω ≤ πc/∆x (i.e., ∆x ≤ λ/2 where λ is the wavelength).
Therefore, even with only two nodes per wavelength, the
PS method has no phase error due to the spatial discretiza-
tion. However, for the FD method which gives a solution
uFD(x, t) = eiω(x/c−βt), where:

β(ω) =
sin(ω∆x/2c)

(ω∆x/2c)
, (6)

the phase (or dispersion) error is:

eFD(ω) = ωt(1− β). (7)

It is seen that this dispersion error is linearly proportional
to time. Hence, the FD method requires a very large Nx
(i.e., very small ∆x) for high frequency problems or if long-
time solutions are needed [4], [8].

From above discussion, the advantage of the PS method
is obvious for the PDE with a constant coefficient as only
two nodes per wavelength are required. For PDEs with
variable coefficients, although a complete theoretical anal-
ysis is not available, numerical results also show advan-
tages over the FD method [8], [19], [20]. However, if the
solution is discontinuous (e.g., tangential magnetic field
components near a perfect conductor, or the shear stress
tensor near a solid-fluid interface), higher spatial frequen-
cies have to be included, and the Gibbs phenomena has
to be addressed. We hope to report the progress on this
aspect in the near future.

One major limitation of the above PS method is the
spatial periodicity requirement that is to be addressed by
this work. The traditional method for solving a nonpe-
riodic problem by the pseudospectral method is to use
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Chebyshev polynomials (or other orthogonal polynomials
of Jacobi type) instead of the above trigonometric polyno-
mials. The Chebyshev pseudospectral method requires π
nodes per wavelength, and has a more stringent CFL sta-
bility condition [5], [13]. The use of PML in the PS method
removes the wraparound effect for unbounded media, as
discussed below.

III. The PSTD Algorithm for Acoustic Waves

Consider a linear, inhomogeneous, absorptive medium
with space-dependent density ρ(r), sound speed c(r), and
absorption coefficient γ(r). The pressure field p(r, t) and
particle velocity v(r, t) field satisfy the basic Newton’s law
of motion and equation of continuity:

ρ
∂v(r, t)
∂t

= −∇p, (8)

∂p

∂t
+ γ(r)c2(r)p(r, t) = −ρ(r)c2(r)∇ · v(r, t) + fs(r, t),

(9)

where fs(r, t) is the volume source density of pressure in-
jection rate (Pa/s). In (9), the absorption coefficient γ(r)
is used to characterize the absorptive loss in the medium.
This absorption coefficient can be related to the attenua-
tion coefficient α(r, ω) by using the complex wavenumber
k(r, ω) =

√
ω2/c2 + iωγ = ω/c′(r, ω) + iα(r, ω), where

c′(r, ω) is the dispersive wave velocity. In this work, the
acoustic medium is assumed dispersionless so that c(r) and
γ(r) are independent of frequency (however, c′ and α are
frequency dependent). The following algorithm, however,
can be readily modified to model dispersive media.

In the traditional finite-difference simulation of acoustic
waves, (8) and (9) are combined to obtain a second-order
partial differential equation for the pressure field. In the
explicit second-order finite-difference schemes, solving this
second-order partial differential equation is more efficient
than directly solving (8) and (9) because only pressure
fields at the two earlier time steps are needed. However,
to use the PSTD method, the PML formulation with the
first-order equations is essential because most other ab-
sorbing boundary condition cannot be used to eliminate
the wraparound effect.

A. The PML for Absorptive Media

To eliminate the wraparound effect, we use the newly
developed PML as the absorbing boundary condition
(ABC). The PML was originally proposed by Berenger [18]
for electromagnetic waves. Chew and Liu [21]–[23] proved
the existence of the PML for elastic waves in solids in spite
of the coupling of compressional (P) and shear (S) waves
whose wave impedances and velocities are different. The
applications of PML for elastic and acoustic waves can be
found in, for examples [21]–[27].

To introduce the PML for acoustic waves in absorptive
media, we use the formulation of stretched coordinates as

proposed for electromagnetic waves and elastic waves [21]–
[23], [30]. With the stretched coordinates, derivative ∂/∂η
(η = x, y, z) is changed to e−1

η ∂/∂η = (aη+iωη/ω)−1∂/∂η,
where aη is a real scaling factor, and ωη represents the in-
trinsic loss in the PML medium [25]. With the split pres-
sure field and source:

p =
∑

η=x,y,z

p(η), fs =
∑

η=x,y,z

f (η)
s , (10)

the partial differential equations are:

aηρ
∂vη
∂t

+ ωηρvη = −∂p
∂η
, (11)

aη
∂p(η)

∂t
+ (aηγc2 + ωη)p(η) + ωηγc

2

t∫
−∞

p(η)(r, t′)dt′

= −ρc2 ∂vη
∂η

+ aηf
(η)
s (r, t) + ωη

t∫
−∞

f (η)
s (r, t′)dt′, (12)

where η = (x, y, z). Note that for the acoustic case, only
the pressure field is split. There is no need to split the
particle velocity v into v(η) as in the elastic PML. This is
simply because the second-rank stress tensor in the elastic
case collapses into a zero-rank tensor (i.e., a scalar pressure
field) in the acoustic case. Equations (11) and (12) consist
of a total of six scalar equations. In addition, the third
term in (12) requires three additional variables for each
cell. Therefore, the memory requirement in the PML re-
gion is 4.5 times as required by a regular acoustic medium
with the same dimension. This extra memory requirement
in the boundary PML region is offset by the effectiveness
of PML in absorbing the outgoing waves. Note also that,
with the introduction of PML, there is an additional term
involving the time-integrated pressure field in (12). This
term represents the coupling of the loss in PML with the
regular absorption loss. More details can be found in [25]
for the PML for acoustic waves.

Under this PML formulation with the complex stretch-
ing variable eη = aη+iωηω , one can show that the reflection
coefficient of an acoustic plane wave at a planar interface
between two different PML layers can be made identically
zero, as for the elastic waves [21]–[23]. For example, con-
sider an interface z = 0 between two PML layers with
the same acoustic parameters (wavenumber k1 = k2 ≡ k),
and same stretching parameters e1x = e2x ≡ ex and e1y =
e2y ≡ ey in x and y directions, but e1z 6= e2z in the z direc-
tion. Assuming that a plane wave in medium 1 impinges
on the interface in the (x, z) plane, the phase matching
condition requires k1x = k2x ≡ kx. From the dispersion re-
lation k2

j = k2
jx/e

2
jx+k2

jz/e
2
jz, that is k2 = k2

x/e
2
x+k2

jz/e
2
jz

for j = 1, 2, we obtain:

k1z

e1z
=
k2z

e2z
=
√
k2 − k2

x/e
2
x,

which make the reflection coefficient:

R =
k2xk1z/e2xe1z − k1xk2z/e1xe2z

k2xk1z/e2xe1z + k1xk2z/e1xe2z
=
k1z/e1z − k2z/e2z

k1z/e1z + k2z/e2z
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identically zero for all frequencies and all incidence angles.
This conclusion also can be obtained from [23]. There-
fore, the interface between these two layers are perfectly
matched. Moreover, if medium 1 is regular (e1z = 1),
but medium 2 is a PML with e2z = a2z + iω2z/ω where
ω2z > 0, waves in the second medium will attenuate, pro-
viding a nonreflecting, attenuative buffer zone to eliminate
the wraparound effect in the PS method.

B. The PSTD Algorithm

In the FDTD method for the first-order partial differen-
tial equations (11) and (12), a staggered grid is used where
the pressure field is located at the cell center, and the ve-
locity components are at the cell face centers [24], [25]. In
contrast, in the PSTD method, pressure and particle ve-
locity fields are all located at the cell center. This centered
grid provides an important advantage over the FDTD al-
gorithm because the material properties are not altered
by the presence of the staggered grid. The temporal grid,
however, is staggered because the central differencing is
used for time stepping.

Therefore, if the unbounded medium is truncated into a
finite computational domain with a total of Nx×Ny ×Nz
cells (cell size ∆x × ∆y × ∆z), and if the temporal grid
is defined for p(η) at t = n∆t, while vη is defined at t =
(n+1/2)∆t, the pressure and velocity fields are denoted by:

p(η)(jx, jy, jz, n) ≡ p(η)
[(
jx +

1
2

)
∆x,

(
jy +

1
2

)
∆y,(

jz +
1
2

)
∆z, n∆t

]
, (13a)

vη(jx, jy, jz, n) ≡ vη
[(
jx +

1
2

)
∆x,

(
jy +

1
2

)
∆y,(

jz +
1
2

)
∆z,

(
n+

1
2

)
∆t
]
,
(13b)

where n is an integer, and jη = 0, . . . , Nη−1. Furthermore,
the second and third terms on the left-hand side of (12)
require the averaging of their values at t = n∆t and t =
(n + 1)∆t because p is not evaluated at t = (n + 1/2)∆t.
This averaging has the same second-order accuracy as the
central differencing used for the first term on the left-hand
side of (12), and therefore does not degrade the overall
accuracy in the discretization.

Using the PSTD method with this discretization, (11)
and (12) become time-stepping equations:

vη(jx, jy, jz, n) = g1ηvη(jx, jy, jz, n− 1)

+ g2ηDη,PS
[
p(jx, jy, jz, n)

]
, (14)

p(η)(jx, jy, jz, n+ 1) = g3ηp
(η)(jx, jy, jz, n)

+ g4ηp
(η)
I (jx, jy, jz, n) + g5ηDη,PS

[
vη(jx, jy, jz, n)

]
+ g6ηf

(η)
s

(
jx, jy, jz, n+

1
2

)
, (15)

where

g1η =
aη/∆t− ωη/2
aη/∆t+ ωη/2

, g2η = − 1(
aη/∆t+ ωη/2

)
ρ∆η

,
(16)

g3η =
aη/∆t− (aηγc2 + ωη)/2

Dηv
, g4η = −ωηγc

2∆t
Dηv

,
(17)

g5η = − ρc2

Dηv
, g6η =

1
Dηv

, (18)

p
(η)
I (jx, jy, jz, n) =

1
2
p(η)(jx, jy, jz, 0)

+
n∑
l=1

p(η)(jx, jy, jz, l), (19)

and Dηv = aη/∆t + (aηγc2 + ωη)/2 + ωηγc
2∆t/2. The

PS operator Dη,PS on a function u(jη) for η = x, y, z is
defined as:

Dη,PS
[
u(jη)

]
=
i2π
N2
η

Nη/2−1∑
m=−Nη/2

mũ(m)ei2πmjη/Nη ,
(20)

where

ũ(m) =
Nη−1∑
jη=0

u(jη)e−i2πmjη/Nη . (21)

Note that the operations in (20) and (21) are obtained
by an FFT algorithm with a number of operations
O(Nη log2Nη). In (15), the source fs is assumed to be
located at a regular non-PML region. In contrast to the
FDTD method [25], there is no need for the material av-
eraging in the calculations of coefficients in (16)–(18).

Equations (14) and (15) constitute a leap-frog system
for vη and p(η) (η = x, y, z). Given a particular source
excitation fs(r, t), this time-stepping system provides the
wavefield solutions for the entire grid. The absorption of
outgoing waves is achieved by the PML region that con-
sists of several (typically 10) layers of PML materials with
a tapered profile to increase the attenuation toward the
outer boundary. Note that because of the periodicity in
the PSTD method, the PML profile with a total of 2K
PML cells in each direction can be distributed at either
ends of the boundaries. For example, as shown in Fig. 1
for the normalized PML profile ωx/ωx,max in the x direc-
tion, K1 cells of PML medium are at the left end, and
(2K −K1) cells of PML medium are located at the right
end of the boundaries, and K1 can be any integer in the
range 0 ≤ K1 ≤ 2K. Usually a quadratic profile is chosen
for the PML buffer zones. In Fig. 1 and the following dis-
cussions, a normalized maximum PML attenuation coeffi-
cient Wx = ωη,max/2πfc is defined where fc is the center
frequency of the source time function.

It is worthwhile to discuss about the implementation of
finite acoustic sources in the PSTD algorithm. In (15), if
the source is a point source, after spatial FFT, the well-
known Gibbs phenomenon will occur because the source
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Fig. 1. A quadratically tapered PML profile for the PSTD method.
Due to the periodicity, K1 can be any integer in the range 0 ≤ K1 ≤
2K, where 2K is the total number of PML cells.

represents a spatially discretized delta function. A simple
way to eliminate this problem is to approximate the source
as a spatially smoothed source occupying a volume of only
a few (four to six) cells in each direction. This will avoid the
inaccuracy in the FFT representation of a discrete delta
function. Alternatively, one can solve for the scattered field
by explicitly subtracting the known incident field due to a
point source in a homogeneous medium.

Another comment is made on the PSTD algorithm re-
garding the smoothness of the functions under the PS op-
erator. As can be seen from (11), (12), (14), and (15), the
PS operator Dη,PS operates on p and vη, the field compo-
nents that are continuous across interfaces perpendicular
to the η̂ direction. This smoothness guarantees the effec-
tiveness of the PSTD method even for media with material
discontinuities. Therefore, for reasonably large contrasts in
material properties, little Gibbs phenomenon is observed.
For the extreme case where the contrast is infinity (for
example, a perfectly soft boundary used to simulate an
air-fluid interface), however, one of these field components
is no longer continuous, and significant Gibbs phenomenon
will arise. Methods are currently being investigated to mit-
igate this difficulty [31].

C. Dispersion Relation and Stability Condition

The dispersion analysis and stability condition of the
above algorithm can be formulated for a homogeneous,
nonabsorptive medium, as discussed in [15] for electro-
magnetic waves. The dispersion relation for the PSTD
method is:

k =
2
c∆t

sin
ω∆t

2
, (22)

where k =
√
k2
x + k2

y + k2
z . Assuming ∆x = ∆y = ∆z, the

CFL stability condition is:

c∆t
∆x
≤ 2√

Dπ
, (23)

where D is the dimensionality of the problem. Given the
same cell size ∆x, the stability criterion in (23) for the
PSTD algorithm is more stringent than that for the FDTD
method by a factor of π/2 ≈ 1.5708. However, considering
the fact that for the same accuracy, the FDTD method
requires much smaller ∆x than the PSTD algorithm, the
time step for the PSTD algorithm can be chosen larger
than that in the FDTD method. In practice, the choice of
∆t in the PSTD method is usually dictated by the accu-
racy consideration instead of stability consideration.

IV. Numerical Results

We have implemented the PSTD algorithm with the
perfectly matched layers as the absorbing boundary condi-
tion for one, two, and three dimensions. Unlike the continu-
ous case, some reflection will occur at the discretized PML
interface. This reflection increases with the contrast in the
coordinate stretching variables. Therefore, to minimize the
reflection from the PML layers, we choose a quadratic or
linear profile for the PML coordinate-stretching variables.
Typically we use 10 cells of perfectly matched layers at
the computational edge on each side (i.e., K = K1 = 10
in Fig. 1).

In the following examples, a monopole source is used
to excite the acoustic wavefield. The time function fs(t)
of the source is the first derivative of the Blackman-Harris
window function [15], [16]. Unless otherwise stated, the
center frequency of the source will be fc = 20 kHz.

A. A Large 1-D Problem

The purpose of this example is to compare the accuracy
of the PSTD and FDTD methods for large-scale problems.
Fig. 2(a) shows a three-layer problem with ρj = 2200,
2500, 2200 kg/m3, cj = 2500, 3500, 2500 m/s, and γj = 0
for j = 1, 2, 3. An infinite sheet of monopole source is lo-
cated at x = 1.6 m, and the receiver is located at x = 25 m.
The center frequency of the source is fc = 20 kHz, and the
size of the problem is 512λmin where λmin = 0.05 m is the
minimum wavelength at the highest frequency considered
(fmax = 2.5fc). The time step is chosen as ∆t = 0.2 µs so
that the error due to the temporal discretization is small.

Fig. 2(b) shows three sets of pressure waveforms at
the receiver location: the PSTD result with a grid den-
sity of GD = 2; the FDTD results with a grid density of
GD = 16, andGD = 32. Although the PSTD result is very
accurate, the FDTD results, even with 32 nodes per wave-
length, have noticeable dispersion errors. The dispersion
errors are displayed in Figs. 2(c) and (d) for the FDTD
and PSTD methods. One observes that with GD = 32,
the maximum dispersion error for the FDTD method is
about 10%, and that for the PSTD method is 1% with
GD = 2. Furthermore, this dispersion error for PSTD can
be reduced by decreasing ∆t. In contrast, to reduce the
error in the FDTD results, both ∆x and ∆t have to be
reduced.
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Fig. 2. PSTD and FDTD results for a large-scale 1-D problem of size 512λmin.

For the FDTD method to produce a result accurate to
within 1%, it is expected that the grid density has to be at
least 64 for this large-scale problem. It means that it re-
quires at least 32 times more computer memory, and about
the same factor more CPU time than the PSTD method.
As an extrapolation to a multidimensional problem of size
512λmin in each linear dimension, the PSTD method is at
least 32D times more efficient than the FDTD method,
where D is the dimensionality of the problem.

B. A 2-D Homogeneous Medium

The purpose of this study is twofold. First, the PSTD
method will be validated by an analytical result. Second,
the choice of the PML profile will be investigated.

The properties of the homogeneous medium are ρ =
2200 kg/m3, c = 2500 m/s, and γ = 0 in two dimensions.
A monopole line source is located at (x, y) = (0.8, 0.8) m,
the center of the computational domain with Nx ×Ny =
64× 64, ∆x = ∆y = 0.5λmin = 0.025 m. The time step is
chosen as ∆t = 0.3 µs. The pressure field p is calculated at
(x, y) = (1.25, 0.8) m. To verify the PSTD result, an ana-
lytical solution is obtained by inverse Fourier transforming

the following frequency-domain solution:

p(r, ω) =
ω

4c2
H

(1)
0 (kr)Fs(ω), (24)

where Fs(ω) is the Fourier transform of fs(t), and k =√
ω2/c2 + iωγ.
Fig. 3(a) shows the comparison between the PSTD re-

sult (where Wx = 1 is used) and the analytical solution.
Excellent agreement is found between the two solutions.
To obtain the reflected waves off the boundary, we use the
PSTD method to simulate a reference model whose compu-
tational domain is so large that the reflected waves do not
appear in the time interval of interest. The reflected waves
in our model of interest are then obtained by subtract-
ing the reference waves from the total waves in Fig. 3(a).
To characterize the performance of the PML absorbing
boundary condition, we choose a series of different values
of PML attenuation coefficient Wx. Figs. 3(b) and (c) show
the reflected waves corresponding to Wx = 0.5, 1.0, and
2.0. The maximum reflected amplitudes for these cases are
−41.5 dB, −81.3 dB, and −77.4 dB, respectively. For this
particular problem, the case with Wx = 1 gives the small-
est reflection. As expected, the optimal Wx depends on the
sound speed of the medium. In general, for a medium with
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Fig. 3. PSTD and analytical results for a 2-D homogeneous medium.
(a) Pressure field at r = 0.45 m. (b) Reflected waves for Wx = 0.5.
(c) Reflected waves for Wx = 2.0 and Wx = 1.0.

sound speed c, the choice Wx = c/2500 gives satisfactory
results.

C. 2-D Inhomogeneous Half Space

In this example, we compare the 2-D PSTD method
with the FDTD method for a 2-D inhomogeneous half-
space. The two acoustic media with ρ1 = 2200 kg/m3, c1 =
2500 m/s, γ1 = 0, and ρ2 = 2500 kg/m3, c2 = 3500 m/s,
γ2 = 0, are separated by an interface at y = 0.925 m. A
monopole source is located at (x, y) = (0.8, 0.8) m, and
19 receivers are located at (xj , yj) = (1.3, 0.3 + 0.05j) m
(j = 1, . . . , 19). The computational domain x ∈ [0, 1.6],
y ∈ [0, 1.6] m is discretized by a uniform grid. The PSTD
method uses a grid of Nx×Ny = 64× 64 and ∆x = ∆y =
λmin/2 = 0.025 m, and the FDTD method uses a grid of

Nx×Ny = 256×256 and ∆x = ∆y = λmin/8 = 0.00625 m.
A small time step ∆t = 0.3 µs is used so that accuracy
and stability requirements are satisfied for both methods.
For brevity, the geometry is now shown here, but it is the
same as in Fig. 4(a) below except that the two rectangular
objects are absent.

In Fig. 5(a) the waveforms at the receiver array are dis-
played for the PSTD and FDTD results. The good agree-
ment between the two sets of results can be better observed
in Fig. 5(b) for the waveforms at the 5-th receiver in spite
of the fact that only two nodes per minimum wavelength
are used in the PSTD method. For this problem of mod-
erate size of 32λmin × 32λmin, the FDTD methods uses
16 times more memory and CPU time. For problems of
larger scales (or equivalently for longer propagation time),
a much finer grid has to be used in the FDTD method,
significantly increasing its computational cost.

D. Objects Buried Under a Half Space

To illustrate the applications of the PSTD method,
acoustic wave interaction with two objects buried under
the half space in the last example is simulated. The geom-
etry is shown in Fig. 4(a), and the two objects have the
same material parameters ρ = 2800 kg/m3, c = 4500 m/s,
γ = 0. The discretization for the PSTD method is the
same as that in the last example.

Fig. 4(b) shows the total pressure field at the receiver
array. In order to show the effects of the scattered field
off the two objects, we perform a simulation for the half
space without the two objects and call this pressure field
the “incident field,” which is subtracted from the total field
to obtain the scattered field of the objects. (Note that this
“incident field” is actually calculated by the last exam-
ple.) Figs. 4(c) and (d) show the incident and scattered
waves, respectively, at the receiver array. The maximum
amplitude of the scattered field is 31.6% of the maximum
amplitude of the total field.

The propagation of acoustic waves can be observed
more clearly with the wavefield snapshots. From the above
simulations, we obtain the snapshots for the total field
and incident field. Then the snapshots for the scattered
field are obtained by subtracting the incident field from
the total field, as shown in Fig. 6. Note that the dynamic
range is reduced from the third plot by a factor of 1.5|j−3|

(j = 1, . . . , 15) for all plots in order to show the wavefield
clearly.

E. Three-Dimensional Effects

In the above 2-D examples, the source is a monopole
line source with an infinite extend in z direction. Similarly,
the medium is assumed invariant in z direction. In reality,
measurements are performed in three dimensions. To study
the 3-D effects, we simulate a similar problem as in the
last example. The two half spaces are exactly the same,
but the two objects are finite in z direction: the object
on the left occupies 0.4 ≤ z ≤ 0.55 m, and the second
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Fig. 4. Two objects in a 2-D half space. (a) Geometry, (b) total pressure field, (c) incident pressure field, (d) scattered field.

Fig. 5. Comparison of PSTD algorithm (grid density: 2) and FDTD results (grid density: 8) for a half space. (a) Waveforms at the receiver
array, (b) waveforms at the 5th receiver.
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Fig. 6. From left to right and top to bottom, snapshots of the scattered pressure field in the PSTD algorithm for Fig. 4(a) at time steps
n = 200j (j = 1, . . . , 15) where ∆t = 0.3 µs. The dynamic range is reduced from the third figure by a factor of 1.5[j−3] (j = 1, . . . , 15).
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Fig. 7. The 3-D effects with a finite source and finite scatterers. (a) Total pressure field, (b) amplitude of total field as a function of receiver
locations, (c) scattered field, (d) amplitude of scattered field as a function of receiver locations.

object occupies 0.65 ≤ z ≤ 0.95 m. The point monopole
source and the receiver array are located at the mid-plane
(z = 0.8 m). The problem is simulated by using the 3-D
PSTD program with Nx×Ny ×Nz = 64× 64× 64 and all
other discretization parameters are the same as in the last
example.

Figs. 7(a) and (b) show the 3-D effects in the total field
at the receiver array. It is observed from the amplitude
plot in Fig. 7(b) that inside the lower half space away
from the interface, as expected, the field decays faster in
3-D than in 2-D. Near the interface, however, the field
in 3-D decays more slowly due to the wave interference
with the interface. However, for the scattered field, the
amplitude decays faster in 3-D everywhere, as shown in
Figs. 7(c) and (d). This is because the interference has
been subtracted out since it is part of the incident field.
(Recall that the incident field was defined earlier as the
field without the objects, but with the interface.)

For this 3-D problem, the FDTD method would have
required a grid at least of size Nx × Ny × Nz = 256 ×
256 × 256, making the memory requirement at least 64
times that in the PSTD method.

F. Effects of Intrinsic Attenuation

Because the PSTD method formulated in this work is
for an absorptive medium, it can be used to investigate the
effects of intrinsic attenuation. As an example, we simu-
late the same model as in Fig. 7, except that the lower half
space is now absorptive with γ = 0.001 s/m2. The total
field and the scattered field are shown in Figs. 8(a) and (c).
Their amplitudes are compared in Figs. 8(b) and (d) with
the lossless case in the last example. Note that the ampli-
tude plots are normalized with respect to the lossless case.
Significant effects of the intrinsic attenuation are observed
in the lossy medium. Therefore, it is important for a nu-
merical method to include the intrinsic absorption of the
medium in its model.

V. Conclusions

A pseudospectral time-domain (PSTD) algorithm is
proposed to simulate transient acoustic wave propaga-
tion in multidimensional, inhomogeneous, absorptive me-
dia. The algorithm is based on the combination of the
Fourier pseudospectral method and the perfectly matched
layer for acoustic media. The PSTD method uses trigono-
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Fig. 8. The effect due to absorption in the second half space. (a) Total pressure field, (b) amplitude of total field as a function of receiver
locations, (c) scattered field, (d) amplitude of scattered field as a function of receiver locations.

metric functions, through an FFT algorithm, to represent
the spatial derivatives in partial differential equations, re-
sulting in an infinite order of accuracy (up to the spatial
Nyquist frequency) in the spatial derivatives. Therefore,
unlike the traditional FDTD method, the PSTD method
has no dispersion error associated with the approximation
of spatial derivatives. The only numerical dispersion error
is in the approximation of temporal derivatives, which can
always be reduced by choosing a smaller time step. The
wraparound effect that limits the traditional Fourier pseu-
dospectral method to periodic problems has been elim-
inated by the perfectly matched layers. We have imple-
mented the PSTD algorithm for 1-D, 2-D, and 3-D prob-
lems. As shown by numerical results, a high accuracy is
maintained in the PSTD algorithm even when only two
cells per minimum wavelength are used in the discretiza-
tion, saving a significant amount of computer memory and
CPU time. As easily seen, however, one major limitation
of the method is the requirement for a uniform grid as
dictated by the use of the FFT algorithms. Further in-
vestigation in this problem is underway, and we hope to
report the progress in the near future.
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