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Abstract— This work presents the random sampling - high
dimensional model representation (RS-HDMR) algorithm for
identifying complex bionetwork structures from multivariate
data. RS-HDMR describes network interactions through a hier-
archy of input-output (IO) functions of increasing dimensional-
ity. Sensitivity analysis based on the calculated RS-HDMR com-
ponent functions provides a statistically interpretable measure
of network interaction strength, and can be used to efficiently
infer network structure. Advantages of RS-HDMR include
the ability to capture nonlinear and cooperative realtionships
among network components, the ability to handle both contin-
uous and discrete relationships, the ability to be used as a high-
dimensional IO model for quantitative property prediction, and
favorable scalability with respect to the number of variables.
To demonstrate, RS-HDMR was applied to experimental data
measuring the single-cell response of a protein-protein signaling
network to various perturbations. The resultant analysis iden-
tified the network structure comparable to that reported in the
literature and to the results from a previous Bayesian network
(BN) analysis. The IO model also revealed several nonlinear
feedback and cooperative mechanisms that were unidentified
through BN analysis.

I. INTRODUCTION

The development of myriad high-throughput biological
measurement techniques has led to the availability of in-
creasingly rich datasets describing the behavior of underlying
biological networks. Experimental methods ranging from
particle-based and multiplex flow cytometric assays to high-
throughput kinase activity assays [1] not only allow for
the simultaneous observation of multiple (> 10) network
species, but are of high enough resolution to capture complex
interactions characteristic of many biological systems. Ap-
propriately designed computational methods are necessary to
reliably identify the bionetwork structure from such methods
and the correspondingly rich datasets they produce.

Several advances have been made in the development
of network inference protocols for analyzing multivariate
datasets taken from high-throughput biological measure-
ments. Network identification algorithms based on linearized
steady-state models and regression analysis have been devel-
oped to identify bionetwork connectivity [2] . Although ef-
fective in some situations, particularly in conditions of sparse
sampling and noisy data, such algorithms discount nonlinear
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interactions which can become significant in understand-
ing complex biological networks. Bayesian networks (BNs)
[3], clustering algorithms [4], and information-theoretic ap-
proaches [5] have been employed to capture both linear
and nonlinear relationships. However, probabilistic methods
like BN analysis can scale poorly with network complexity,
especially when higher-order interactions are considered.
As a result, network connections are often simplified as
discretized functions. Information loss through discretiza-
tion amplifies, however, as high-throughput measurement
technologies improve and quantitative measurements become
more precise.

This article introduces the random sampling – high di-
mensional model representation (RS-HDMR) algorithm for
a quantitative, predictive characterization of nonlinear bionet-
work interactions directly from laboratory data [6], [7]. RS-
HDMR decomposes interactions among network species into
a hierarchy of (usually nonlinear) continuous input-output
(IO) component functions, describing both independent and
coopeartive interactons among the network components.
These component functions can then be utilized to (1)
effectively describe the network structure as well as (2)
provide quantitative understanding of the network behavior
under previously unsampled conditions.

The RS-HDMR algorithm has previously been applied
to a broad range of input-output modeling problems [6];
it is employed in this work to quantitatively capture the
complex interactions among protein species in the human
T-cell signaling network. A map of network structure was
generated based on the relative strength of decomposed
RS-HDMR functions. Results were then compared to those
obtained previously through BN analysis and to descriptions
of the signaling network by previous literature [8]. In this
illustration, the ability of RS-HDMR to quantitatively capture
nonlinear and higher-order relationships was shown to be
a significant factor in characterizing several of the target
protein network’s feedback and cooperative mechanisms.

II. THE RS-HDMR ALGORITHM

RS-HDMR is a tool to deduce nonlinear and coopera-
tive interactions among a set of inputs and outputs. The
independent and cooperative effects of n input variables
x = (x1, x2, ...xn) on an output, y = f(x), can be described
in terms of a hierarchy of RS-HDMR component functions
[7]:
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f(x) = f0 +
n∑

i=1

fi(xi) +
∑

1≤i<j≤n

fij(xi, xj) + . . . (1)

Here f0 represents the mean value of f(x) over the sample
space, the first-order component function fi(xi) describes the
generally nonlinear independent contribution of the ith input
variable to the output, the second-order component function
fij(xi, xj) describes the pairwise cooperative contribution of
xi and xj , and further terms describe higher order coopera-
tive contributions. The RS-HDMR component functions can
be represented and determined in a variety of ways. In this
article, they are approximated as weighted orthonormal basis
functions in order to reduce the sampling effort and take the
following form:

fi(xi) ≈
k∑

r=1

αi
rϕ

i
r(xi) (2)

fij(xi, xj) ≈
l∑

p=1

l′∑
q=1

βij
pqϕ

i
p(xi)ϕj

q(xj) (3)

Where k,l, and l′ are integers (generally ≤ 3 for most
applications), αi

r and βij
pq are constant weighting coefficients

to be determined, and the basis functions {ϕ} are optimized
from the distribution of sample datapoints to follow condi-
tions of orthonormality [6]. Basis functions are approximated
in this work as non-linear polynomials, where

ϕi
1(xi) = a1xi + a0 (4)

ϕi
2(xi) = b2x

2
i + b1xi + b0 (5)

ϕi
3(xi) = c3x

3
i + c2x

2
i + c1xi + c0 (6)

The coefficients a0,a1,b0,...c3 are calculated through
monte carlo integration (hence the term “Random Sampling”
HDMR) under constraints of orthonormality, such that when
integrated over all datapoints,∫

ϕr(x)dx ≈ 0 ∀ r (7)∫
ϕ2

r(x)dx ≈ 1 ∀ r (8)∫
ϕp(x)ϕq(x)dx ≈ 0 (p 6= q) (9)

In effect, the orthonormality of the basis functions is
optimized for a given set of observed data. Optimal basis
functions are then weighted by coefficients (αi

r and βij
pq for

first and second order component functions, respectively),
which are calculated from least-squares regression. Biased
inference and overfitting is often a problem when analyzing
noisy, sparsely sampled, highly correlated data. To address
this, only inputs and their respective component functions
validated as significant by the statistical F-test were included
in RS-HDMR expansions as a method of variable selection.
The resultant expansion in Eq. (1) serves both as a predictive

model of network response due to its input variable inter-
actions and as a statistical representation of the underlying
biological system.

The decomposition in Eq. (1) applies to both continuous
and discrete data sets. In most cases, the zeroth, first, and
second order functions are sufficient to describe the high-
dimensional IO relationships of physically realistic systems
[6]. When all the component functions are identified from
laboratory data, they can be directly used as an equivalent
IO model to describe the quantitative network behavior.

In network structure inference, the relative strength of in-
teractions among network components can be quantitatively
determined through a global sensitivity analysis based on
the respective RS-HDMR component functions. Here the
total variance σ2 of an output f(x) is decomposed into
hierarchical contributions from the individual RS-HDMR
component functions:

σ2 =
∫

[f(x)− f0]
2
dx =

n∑
i=1

σ2
i +

∑
1≤i<j≤n

σ2
ij + . . . (10)

The sensitivity indices, Sl(l = 1, 2, ..., np), are then
defined as the portion of the total variance σ2 represented by
the variance of the lth component function. In addition, the
sensitivity indices Sl describing first, second (and higher, if
warranted) order component functions of an input variable
xi can then be summed into a measure ST

i (i = 1, 2...n),
describing both independent and higher-order effects of xi

on the output. Under the assumption that relatively more
significant and direct network interactions are described by
high sensitivity indices (an assumption similar to the Markov
condition used in Bayesian analysis), the probability for the
existence of a network connection can be ranked by its
corresponding ST

i value.
In many bionetworks, such as cyclic systems, a network

component can act as both an input (upstream species) and
an output (downstream species). Similar to Bayesian network
analysis, RS-HDMR can be used to infer causal interactions
using time-series data. However, this work focuses on apply-
ing RS-HDMR to biological network inference with no ex-
plicit causal relationships. In this case, a separate RS-HDMR
IO expansion is formulated using each measured species as
the output, f(x), and the remaining species as inputs. As
a result, n RS-HDMR IO mappings are determined for a
system of n network species. The agglomeration of the RS-
HDMR expansions then constitutes a complete predictive
model of network behavior.

III. APPLICATION TO A CELL-SIGNALING NETWORK

RS-HDMR network inference was applied to infer the
structure of a well studied cell signaling network. Data used
in this work was taken from high-dimensional cytometry
measurements of human primary naive CD4+ T-cells, where
individual cells observed in a given cell population describe
network behavior under statistically sampled microenviro-
ments [8]. Observed proteins and phoshpolipids include pro-
tein kinase C (PKC), Raf, mitogen-activated protein kinases
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(MAPKs) Erk1 and Erk2, p38 MAPK, Jnk, AKT, Mek1
and Mek2, protein kinase A (PKA) substrates, phospho-
lipase C-γ (PLC-γ), phosphatidylinositol 4,5-bisphosphate
(PIP2), and phosphatidylinositol 3,4,5-triphosphate (PIP3).
Nine datasets were first analyzed individually using RS-
HDMR, where each dataset corresponds to a different pertur-
bative experimental condition. 11 RS-HDMR IO mappings
were computed from each dataset to identify all significant
component functions relating the 11 network species, with
each function using a measured species as the dependent
variable (the output, f(x)) and the remaining ten species
as the input variables. Each RS-HDMR mapping (99 total
for this application) then provides a quantitative description
of the relationships between the output variable and its
respective inputs.

In addition to the above analysis, 13 sets of laboratory
data from activation or inhibition of specific protein species
were also paired with data taken from general stimulatory
conditions (the control) in order to examine the population-
wide effects of exogenous perturbative conditions. Because
specific perturbations were not quantified in cytometry mea-
surements, the measured levels of the perturbed species were
represented discretely as high (f(x) = 1) or low (f(x) = 0).
RS-HDMR analysis was then conducted on these discrete
data sets, using the perturbed species as the output.

Sensitivity analysis results from the 99 RS-HDMR IO
mappings from individual datasets and the 13 RS-HDMR
IO mappings from the pairwise experiments were aggre-
gated, and the sensitivity measures ST

i describing network
connections were ranked by magnitude. A threshold sen-
sitivity value Smin was defined empirically as the lowest
value whose corresponding input-output relationship can
be considered as a real connection. Fig. 1 shows the 21
high-confidence connections identified using this theshold.
Of the 21 connections, all were described to some extent
through previous empirical studies in a variety of systems.
Three lower confidence (ST

l < Smin) network connec-
tions were also identified which correspond with three well
known connections reported previously (PKA/p38, PKA/Raf,
PKC/PIP2). RS-HDMR analysis successfully identified all
of the connections revealed through previous BN analysis
results [8] using the same data sets, as well as two additional
connections (PIP3/Akt and PKC/Plcγ) well-established in the
literature but not identified by BN analysis.

In addition to the first-order connections that relate two
network components, three statistically significant second-
order connections were also revealed by RS-HDMR analysis:
(PLCγ, PIP2, PIP3), (PKA, Akt, Erk), and (PKC, Jnk,
p38). The most significant one is the connection among
PIP2, PIP3, and PLCγ. These three proteins are unique
from other measured species in that they have significant
negative feedback interaction. Activated PLCγ catalyzes the
destructive cleavage of PIP2. The product of PIP2 phos-
phorylation, PIP3, serves as a docking site for PLCγ and
ultimately catalyzes PLCγ phosphorylation and activation. In
several RS-HDMR expansions, this feedback interaction was
characterized through second-order RS-HDMR component

Fig. 1. HDMR Identified Significant Network Connections. Significant
network interactions (Smin = 0.15) from individual and pairwise RS-
HDMR analysis are graphically represented. Graph edges represent network
interactions with total sensitivity measures ST

i , which account for total first,
second, and third order interactions, that are above the threshold Smin.
Orange lines represent connections identified only through pairwise com-
parison. Dashed green lines indicate connections well defined in previous
literature, but identified to a less significant degree by RS-HDMR analysis
(ST

i < Smin). Causality is not inferred by RS-HDMR analysis in this
application, thus connections are not directional.

functions.
Fig. 2 shows two significant first-order component func-

tions and a significant second-order function with Akt as the
output. Inspection of these component functions can provide
meaningful physical interpretation. For example, the func-
tional dependence of Akt on Erk is monotonically increasing,
nearly linear, and consistent across several experimental
conditions; this suggests a relatively direct network inter-
action. However, PKA is neither monotonic nor consistent
across experimental conditions at low levels of PKA. Thus
while PKA may play a more consistent (and direct) role in
positively affecting Akt at high levels, its relationship to Akt
at lower levels of PKA may be considered less significant,
or possibly more indirect.

Fig. 2 also describes the second-order function with the
highest sensitivity index of the nine RS-HDMR expansions
with Akt as the output, capturing the cooperative influence
of PKA and Erk on Akt. Evidence in the literature supports
the presence of complex feedback and cooperative inter-
actions among Erk, Akt, and PKA [9]. Akt may interact
with Erk through the Raf/Mek/Erk pathway and with PKA
independently of Erk through a CaMKK-mediated pathway.
However, PKA has been reported to negatively regulate
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Fig. 2. First and second order RS-HDMR Component Functions
Describing Akt. First-order RS-HDMR component functions describing
interactions between Akt and other network species were averaged over cor-
responding RS-HDMR functions describing the same network connections
under all experimental conditions. Of the ten total first-order component
functions, two were determined by F-test to be significant. The first and
second most significant functions correspond with the input species Erk and
PKA, respectively. The thick blue line describes the mean function, and thin
black lines are one standard deviation above and below the mean function.
The most significant second order RS-HDMR-component function of the
nine RS-HDMR expansions describes the cooperative relationship between
Akt, Erk and PKA.

Erk activity by phosphorylating Raf [10]. This cooperative
interaction may be one physical explanation for this signifi-
cant second-order component function observed through RS-
HDMR analysis.

The collection of RS-HDMR component functions can be
directly used as a quantitative IO model to predict how the
network behavior is affected by variations in one or more
network components. Importantly, this IO model is obtained
without any detailed mechanistic information of the network,
hence it can be a useful tool for understanding network
behavior and guiding network engineering when construction
of mechanistic models is impractical.

IV. DISCUSSION AND CONCLUSION

The RS-HDMR algorithm was empolyed in this work to
quantitatively characterize the structure of a cell signaling
network, as well as to construct a quantitative IO model
of the network behavior. The RS-HDMR predictions are
obtained without any mechanistic modeling of the network;
information is extracted directly from both continuously
and discretely distributed high-dimensional laboratory data.

Characterization of nonlinear IO relationships is made com-
putationally manageable without losing significant informa-
tion by approximating the interactions through a hierarchy
of orthonormal basis functions. The restricted approximation
of RS-HDMR component functions as orthonormal basis
functions allows for a clear physical/statistical interpreta-
tion while maintaining robustness to outlier datapoints. The
higher-order interactions can be a significant feature of
complex bionetworks. In this work, incorporation of such
cooperative IO functions significantly improved the quanti-
tative predictive and data-fitting accuracy of RS-HDMR IO
mapping, revealing network interactions unobserved through
both first-order RS-HDMR and BN analysis. Lastly, RS-
HDMR calculation scales well with respect to the number of
network species [7] (in comparison, BN optimization often
requires heuristic approaches), making it a favorable method
for studying complex bionetworks.
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