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Estimating Particle Sulfate Concentrations Using
MISR Retrieved Aerosol Properties

Yang Liu, Bret A. Schichtel, and Petros Koutrakis

Abstract—Understanding the spatial distribution of fine particle
sulfate ��

�

�
concentrations is important for optimizing emis-

sion control strategies and assessing the population health impact
due to exposure to ���

�
. Aerosol remote sensors aboard polar

orbit satellites can help expand the sparse ground monitoring
networks into regions currently not covered. We developed a
generalized additive model (GAM) using MISR fractional aerosol
optical depths (AODs) scaled by GEOS-Chem aerosol profiles to
predict ground-level ���

�
concentrations. This advanced spatial

statistical model was compared with alternative models to evaluate
the effectiveness of including simulated aerosol vertical profiles
and adopting an advanced statistical model structure in terms
of improving the AOD- ���

�
association. The GAM is able to

explain 70% of the variability in ���

�
concentrations measured

at the surface, and the predicted spatial surface of annual average
��

�

�
concentrations are consistent with interpolated contours

from ground measurements. Comparisons with alternative
models demonstrate significant advantages of using model-scaled
lower-air fractional AODs instead of their corresponding column
values. The nonlinear association between ���

�
concentrations

and fractional AODs makes the GAM a more suitable model
structure than conventional linear regressions.

Index Terms—Fractional AOD, GAM, MISR, particle sulfate,
spatial pattern.

I. INTRODUCTION

F INE particulate matter is a complex mixture of
airborne particles primarily composed of sulfate, nitrates,

ammonium, elemental carbon, organic compounds, and mineral
dust. Epidemiological studies worldwide have established a
robust association between exposure to and various
adverse health outcomes such as respiratory diseases, chronic
obstructive pulmonary disease, cardiovascular diseases, and
premature death [1], [2]. Particulate matter also has important
optical properties affecting visibility and the global radiation
balance. Measuring the chemical composition of is
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crucial in determining the relative toxicity of different
constituents as well as their optical properties, hence devel-
oping effective emission control policies [3]. Ground-based
monitoring networks such as the chemical speciation
network (CSN) [4] operated by the U.S. Environmental Protec-
tion Agency (EPA) and the Interagency Monitoring of Protected
Visual Environments (IMPROVE) network [5] have been the
basis for studying the spatial and temporal characteristics of
major components such as sulfate ( ). Although
these ground measurements of particle speciation are consid-
ered accurate and used by regulatory agencies such as EPA
and National Park Service for compliance monitoring, they are
limited both spatially (mostly in urban areas or national parks)
and temporally (every three days or every six days) due to high
operational cost.

Polar orbiting satellites can cover nearly the entire globe
in the matter of a few days. The rapidly advancing satellite
aerosol remote sensing technology makes them a potential
source of information on the transport and spatial patterns
of fine particles. The Multiangle Imaging SpectroRadiometer
(MISR) was launched in December 1999 aboard NASA’s Earth
Observing System (EOS) Terra satellite. MISR aerosol retrieval
over land is described in detail elsewhere [6] and given briefly
here. In the operational MISR aerosol retrieval, it is assumed
that atmospheric aerosols are horizontally homogeneous within
a 17.6 km x 17.6 km region. It uses the presence of spatial
contrasts within the 17.6-km retrieval region to derive empirical
orthogonal functions (EOF) to represent the region-averaged
surface-leaving light reflection. MISR defined a set of aerosol
mixtures to represent aerosol types globally for computational
efficiency. These mixtures are combinations of several aerosol
components defined by a size distribution, shape, refraction
index, and scale height. MISR observed top-of-atmosphere
(TOA) radiances are compared to each of the TOA radiances
calculated based on the predefined aerosol mixtures. A set
of statistical tests was developed to determine which aerosol
mixtures best fit the observations. These tests explicitly include
instrument measurement uncertainty in the retrieval results [7].
Previous research that linked various satellite-retrieved aerosol
optical depths (AODs) to ground level particle concentrations
has shown that particle vertical distribution and change of
composition must be considered in order to establish a robust
relationship between AOD and ground-level particle abundance
[8]–[10].

As the MISR algorithm identifies a set of aerosol compo-
nents representing the major ambient particle species, these
components contain valuable information about particle emis-
sion sources and chemistry [11], [12]. We have developed a

1939-1404/$26.00 © 2009 IEEE



LIU et al.: ESTIMATING PARTICLE SULFATE CONCENTRATIONS USING MISR RETRIEVED AEROSOL PROPERTIES 177

TABLE I
AEROSOL COMPONENTS ASSUMED IN MISR VERSION 17 RETRIEVALS

three-step approach in which MISR AOD data are combined
with simulated aerosol vertical profiles to estimate ground-level
concentrations of constituents such as [13], [14].
The first step is to extract aerosol speciation information con-
tained in the MISR fractional AOD values. The fractional AOD
of a MISR aerosol component is the average contribution of this
component to total AOD in all successful aerosol three-compo-
nent mixtures. In practice, this primarily distinguishes spherical
from nonspherical and bright from light-absorbing aerosol
species in the MISR data. Since AOD is a column aggregate,
the second step is to strengthen the correlation between AOD
and near-surface concentrations by scaling the column
fractional AODs with GEOS-Chem simulated aerosol vertical
profiles. Finally, a multivariate linear regression model was
developed to estimate concentrations with the scaled
fractional AODs as major predictors. The objective of this
analysis is to evaluate the effectiveness of each step in terms of
their effectiveness in improving the AOD- association.
We wish to provide guidance to the future development of
this technique. We adopt an advanced model structure flexible
enough to account for any nonlinear effects of the fractional
AODs and spatial and temporal biases. We present the results
of estimating the spatial trend of concentrations in the
continental United States using the MISR fractional AODs. We
first introduce the ground measurements, model simulations,
and satellite data in this analysis. We then describe the mod-
eling approach to estimate ground level concentrations.
Model fitting results are compared to the results from two
alternative models to evaluate the effectiveness of simulated
aerosol vertical profiles and the nonparametric model structure.
Finally, we use the final GAM to predict annual mean

concentrations on a 50-km resolution grid in the continental
U.S., and evaluate the spatial patterns of predicted levels
with interpolated ground measurements.

II. DATA AND METHODS

A. MISR Level 2 Aerosol Data

This analysis used the Version 17 MISR Level 2 aerosol data.
In this dataset, there are 74 different aerosol mixtures that are
constructed from up to three of the eight predefined aerosol
components (i.e., components 1, 2, 3, 6, 8, 14, 19, and 21)
(Table I). MISR aerosol components are designed to be approx-
imately orthogonal to ensure minimal overlapping in the am-
bient aerosol species they represent. A detailed discussion of
MISR data structure, the aerosol components used to construct
the aerosol models and the percentage contribution of each com-
ponent to total AOD is given elsewhere [13]. The MISR aerosol
data covering the continental U.S. in 2001 and 2005 were ob-
tained from the NASA Langley Research Center (LARC) At-
mospheric Sciences Data Center (http://edg.larc.nasa.gov/~im-
swww/imswelcome/index.html). We selected these two years
because MISR had consistent data versions at the time of this
analysis. Previous research has indicated that MISR retrieved
aerosol microphysical information is more accurate at higher
AOD values. Although setting a lower bound of 0.15 or higher
for total AOD would allow only higher quality MISR aerosol
microphysics data to be included in the modeling process, it will
substantially bias the predicted concentrations. In addi-
tion, to ensure a sufficiently large sample size to fit the statis-
tical models, we excluded all AOD values less than 0.05 in the
following modeling analysis.
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Fig. 1. Geographical locations of EPA CSN sites (triangles) and the IMPROVE sites (diamonds) in the continental U.S. GEOS-Chem 2 � 2.5 grid centroids are
shown as grey dots.

B. Speciation Data

Daily average particle sulfate concentrations collected by
EPA’s CSN for 2001 and 2005 were obtained from EPA’s Air
Quality System (AQS) (http://www.epa.gov/ttn/airs/airsaqs/de-
taildata/downloadaqsdata.htm). IMPROVE measurements of
daily sulfate concentrations during the same periods were ob-
tained from the Visibility Information Exchange Web System
(VIEWS) (http://vista.cira.colostate.edu/views/). Fig. 1 shows
the spatial distribution of approximately 210 CSN sites mostly
in the east and 140 IMPROVE sites. In developing our statistical
models, we selected all daily concentration measure-
ments in the AQS except those identified as low quality by the
Quality Assurance qualifiers.

C. GEOS-Chem Aerosol Simulation Data

The GEOS-Chem model is a global 3-D chemistry and trans-
port model (CTM) driven by assimilated meteorological data
from the Goddard Earth Observing System (GEOS-4) at the
NASA Global Modeling and Assimilation Office (GMAO) in-
cluding winds, convective mass fluxes, boundary layer heights,
temperature, clouds, precipitation, and surface properties. The
aerosol and gaseous simulations are coupled through forma-
tion of sulfate and nitrate, partitioning of total inorganic ni-
trate, heterogeneous chemistry on aerosols, and aerosol effects
on photolysis rates [15]. GEOS-Chem aerosol simulation (ver-
sion 7-03-06 in the current analysis) produces mass loadings of
particle species such as nitrate , sulfate , ammo-
nium , organic (OC) and elemental carbon (EC), and sea
salt, and dust at 3-h intervals, 2 2.5 spatial resolution, and 20
vertical layers in the troposphere [16]. Although GEOS-Chem
aerosol vertical profiles have not been validated over land, Park
et al. showed using an earlier version that the model can repro-
duce with no significant bias the observed vertical profiles of
sulfate aerosols from the TRACE-P aircraft campaign over the

Pacific Ocean [17]. Simulation results for 2001 and 2005 are in-
terpolated to 10–12 a.m. local time values to match the MISR
sampling time window. GEOS-Chem simulated aerosol loading
profiles are used as scaling factors to calculate lower air MISR
AOD, as discussed later. It should be noted that GEOS-Chem
(version 8-01-01) is now driven by a newer version of meteoro-
logical data (GEOS-5). However, the processes most relevant to
the vertical distribution of aerosols, including, boundary layer
mixing and aerosol microphysics were not changed (Jintai Lin,
personal communication). Therefore, using an older version of
GEOS-Chem simulation results is unlikely to have any signifi-
cant impacts on the major findings of this analysis.

D. Model Development

As mentioned above, a three-step approach has been devel-
oped to strengthen and stabilize the relationship between
concentrations and MISR AOD, whose original form is dis-
cussed in detail elsewhere [13], [14]. Since each of the eight
MISR aerosol components can have different contributions to
ground-level sulfate concentrations, the first step involves dis-
sembling total MISR column AOD into species-related frac-
tions using the AOD value associated with, and the three aerosol
components defined by each of the 74 aerosol mixtures (1). If
present, the fractional AOD of a MISR aerosol component is
defined as the average contribution of this component to total
AOD. For example, if MISR does not observe the presence of
any dust particles in a 17.6 km pixel, the fractional AODs for
dust components (i.e., 19 and 21) will be zero. By definition, the
sum of all the significant fractional AODs is equal to the total
column AOD. See (1), shown at the bottom of the next page.

The second step is calculating the lower-air fractional AOD
for each component by scaling them with GEOS-Chem sim-
ulated aerosol vertical profiles. We assume that the lower-air
(i.e., km above ground) fraction of AOD is more strongly
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correlated to surface observations due to active vertical mixing
in the boundary layer during daytime. This assumption is tested
in one of the alternative models. Because the eight MISR
aerosol components are not defined by chemical composition,
it is not feasible to match each GEOS-Chem species to a MISR
aerosol component. Therefore, we combine GEOS-Chem
aerosol mass loadings of , , , and sea salt at
each vertical layer to represent the contribution of spherical
nonabsorbing particles over land, and use it to scale MISR
components 1, 2, 3, and 6. We combine the mass loadings of
OC and EC to represent the contribution of spherical absorbing
particles, and use it to scale MISR components 8 and 14. We
use the mass loadings of dust to represent the contribution of
nonspherical particles, and use it to scale MISR components
19 and 21 (2). GC lower-air aerosol loading in (2) refers to
the sum of GEOS-Chem species mass loadings within one
kilometer from the surface, and GC column aerosol loading
refers to the sum of GEOS-Chem species mass loadings in all
20 layers. We did not correct the particle growth effect at lower
troposphere using GEOS-Chem relative humidity fields as the
nonlinear spatial and temporal terms included in the GAM ((3)
can partially account for it. In addition, applying an individual
humidity correction factors to combined species such as EC
and OC can introduce uncertainty into the models

(2)

The last step is to develop a statistical model to link lower-air
fractional AODs with sulfate concentrations. Because eight
MISR aerosol components are designed to be approximately
orthogonal, we can now include them as individual predictors
in our statistical model. We develop a generalized additive
model (GAM) with lower-air fractional AOD values as the
main predictors of concentration (3). A GAM expands
the capability of traditional linear regressions by allowing
some or all predictor variables to have nonlinear relationships
with the dependant variable by using semi-parametric spline
smoothers [18]. Like linear regression models, a GAM assumes
that the associations of predictor variables with the dependant
variable are additive

(3)

On the left-hand side of (3) is daily concentrations
measured at CSN or IMPROVE sites. On the right hand side,

is a 2-D smooth spatial bias (analogous to model
intercept in a linear regression) reflecting the potential impact
of site locations on the associations between and frac-
tional AODs. The x and y are geographic coordinates of CSN
and IMPROVE sites under U.S. contiguous Albers projection.

is a nonlinear regression term varying smoothly in time
(day of year) to account for systematic seasonal variations.
Eight MISR lower-air fractional AODs corresponding to the
eight MISR aerosol components are included as predictor vari-
ables represented by (MISR lower-air fractional ).
The fitted nonlinear smooth function for each MISR aerosol
component is analogous to the regression coefficient in a linear
regression model. Our GAM still assumes that the associations
between MISR aerosol components and concentrations
are constant across the entire modeling domain. Fitting spa-
tially varying smooth functions for each site or clusters of sites
is not feasible due to limited data available. Nonetheless, our
GAM represents a significant improvement over a traditional
linear model as the nonlinear bias terms and smooth func-
tions are difficult to represent in a linear model. The scaled
lower-air fractional AODs were tested for collinearity in a
linear regression model setting and no significant collinearity
was found (results not shown). This is consistent with the fact
that the eight MISR aerosol components used to form various
aerosol mixtures are designed to be approximately orthogonal
to each other in order to optimally represent the aerosol types
in ambient atmosphere as well as possible ([9] and Ralph Kahn,
personal communication). Therefore, they are all included in
the GAM as independent predictor variables. Our preliminary
modeling analysis indicated little discrepancy due to different
measurement protocols between CSN and IMPROVE so no
network indicator was included in the model as a variable. This
agrees with a previous comparison of IMPROVE and CASTNet
sulfate measurements [5] and a comparison of sulfate concen-
trations from collocated IMPROVE and CSN samplers [19]. All
the lower-air fractional AODs are assumed to have nonlinear
associations with concentration although they can take
linear forms if linear relationships fit the model well based
on standard GAM fitting criteria (generalized cross-validation
scores, t statistics, and model adjusted estimates).

Liu et al. [13], [14] already demonstrated in a case study that
the fractional AODs approach performs substantially better
in estimating ground-level concentrations compared
to using total AOD as the sole predictor. In this analysis, we
develop two alternative models after the initial step of deriving
fractional AODs, to evaluate additional impacts of including
GEOS-Chem aerosol profiles and using the nonlinear GAM
structure. The terminology of the alternative GAM (3a) is iden-
tical to (3) except that lower-air fractional AODs are replaced

(1)
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TABLE II
COMPARISON OF MODEL FITTING RESULTS FOR FULL GAM AND ALTERNATIVE MODELS

with column fractional AODs [i.e., (2) is not implemented]. The
alternative general linear model (GLM) uses scaled lower-air
fractional AODs as predictors, but takes a more traditional
linear regression model structure (3b) as in Liu et al. [14]. is
model intercept, is the regression coefficient for lower-air
fractional AOD of aerosol component I, and is the group of
regression coefficients for a four-level categorical variable for
season

(3a)

(3b)

III. RESULTS AND DISCUSSION

A. Fitting of the Full Model

After spatial and temporal aligning, the final model fitting
dataset has 1,387 site-days. As shown in Table II, the adjusted
model values indicate that after adjusting for the number of
variables included in the model, the full GAM explains 70% of
the variability in concentrations. All the predictor vari-
ables in Table II are significant at level. Both the spa-
tial bias and temporal term are significant, indicating the pres-
ence of residual spatial and temporal variability unexplained by
fractional AODs. Without these two terms, the adjusted model

is 0.62, approximately a 10% decrease. The unexplained
variability in concentrations can be attributed to a few
factors. First, as a polar orbiting instrument, MISR measures at-
mospheric aerosols at a given location around 10:30 a.m. local
time. This snapshot may not represent 24-hr average conditions

Fig. 2. Scatterplots of predicted daily �� concentrations versus CSN and
IMPROVE observations. The solid line represents simple linear regression re-
sults with intercept excluded. The 1:1 line is displayed as a dashed line for
reference.

precisely. Second, MISR observes ambient particles whereas
CSN and IMPROVE sites measure concentrations as dry
mass. Equation (3) does not fully account for spatial and tem-
poral variability in relative humidity and the associated sulfate
particle growth [20]. Third, although each MISR aerosol com-
ponent has a unique combination of size distribution, particle
shape and refractive index and the components are designed
to be approximately orthogonal, the significant overlap in the
size distributions and incomplete orthogonality may limit their
capability of fully distinguishing between significant shifts in

size distributions in space and time. Fourth, the 2 2.5
resolution GEOS-Chem aerosol vertical profiles are only av-
erage representations of the actual aerosol vertical profiles for
the 17.6 km resolution MISR fractional AODs. Finally, compar-
ison of ground-level point measurements with areal satellite ob-
servations may introduce additional model uncertainty because
of the spatial averaging of satellite observations. Fig. 2 shows
the scatter plot of fitted concentrations versus EPA CSN
and IMPROVE observations, and the model underesti-
mates by approximately 19%.
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Fig. 3. Fitted smooth regression terms in the full GAM for the spatial bias term (plot a), day of year (plot b), and scaled lower-air fractional AODs for MISR
aerosol component 1 (plot c), 2 (plot d), 3 (plot e), 8 (plot f), 19 (plot g), and 21 (plot h). The two dashed lines in plot b through h are confidence intervals of the
fitted smooth curves. The smooth terms have units of �g/m .

Fig. 3 shows how fitted concentrations vary with
each significant variable in the full GAM while holding other
variables constant. The contours in plot (a) represent the spatial
bias in fitted concentrations as compared to the national
average in our modeling domain. Ranging from 1.5 g/m in
DC-Maryland-Virginia region to g/m in northwest, it is
small compared with the fractional AODs [plots (c) through
(h)], which can be as high as 15 g/m for fitted con-
centrations. The temporal bias term also has a relatively small
impact on fitted concentrations [plot (b)]. All scaled
MISR lower-air fractional AODs are significant predictors
except for components 6 and 14. Component 14 represents
highly absorbing particles such as EC and some OC species
so it is not surprising that this component is not a significant
predictor of bright nonabsorbing sulfate particles. All aerosol
components contribute to concentrations positively, i.e.,
higher fractional AODs predict higher concentrations.
Because component 19 is present in only 15% of the data
records and is correlated with component 21, its significance
is not necessarily robust. Nonetheless, the significance of dust
components (19 and 21) could be because dust particles can be
coated with during transport passing polluted industrial
areas [21]. When included in the model, the positive fractional
AOD of component 6 (i.e., the x-axis) yields a decrease in pre-
dicted concentrations (i.e., the smooth curve is negative
on the -axis), which is not physically interpretable. As a result,
it is excluded from the final model.

It has been reported that particle scattering efficiencies ob-
served at multiple IMPROVE sites vary directly with mass con-
centration [22], [23]. The authors of these studies speculated
that this is caused by the shift of particle size distributions to
larger particles due to particle aging and humidification related
to in-cloud processing during transport. This means that the
AOD— relationship will vary spatially depending on the
distance between the monitoring site and emission sources

as well as the meteorology along the transport pathway. This
is reflected in our statistical model as the nonlinear associa-
tions between concentrations and scaled MISR fractional
AODs. In addition, it might also be related to the fact that these
components are not defined exactly to match common chem-
ical species in .The nonlinear association could also rise
from decreased MISR retrieval accuracy and slight overestima-
tion at lower AOD values [24]. Unfortunately, it is not possible
to explain the shape of each individual smooth function given
the empirical nature of our GAM.

B. Fitting Results of the Alternative Models

The two alternative models have slightly different sets of
significant predictors in the east and the west; hence, each
model is fitted in the two regions separately (808 site-days
in the east, and 579 site-days in the west). For the purpose
of comparing model performance, the full GAM is also fitted
in each region separately. The significant predictors in the
alternative GAM (3a) are identical to the full GAM in the east.
The adjusted model values with and without the spatial
bias and temporal term (0.64 and 0.54, respectively) indicate
a slightly lower model performance than the full GAM (3)
in estimating concentrations. More importantly, in the
west the adjusted model value decreases by 50% without
the spatial bias and the temporal term (from 0.58 to 0.28).
The greater importance of these terms in (3a) signals column
fractional AODs as weaker predictors of concentrations
than their scaled lower-air counterparts in the full GAM. This
is not surprising, as scaled fractional AODs are less influenced
by possible long-range pollution transport events in the upper
troposphere, which is often unrelated to ground-level
concentrations. In addition, simulated aerosol profiles also ad-
dress the issue of vertical mixing directly linked to ground-level
pollutant concentrations.
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Fig. 4. 2-D surfaces of predicted annual average �� concentrations (upper
plot, large �� point sources �� ������ tons�year� labeled as stars) and an-
nual average �� concentrations interpolated from IMPROVE and EPA mea-
surements (lower plot, IMPROVE sites labeled as dots, CSN sites labeled as
triangles).

The significant predictors in the alternative GLM (3b) are
identical to those for the full GAM in the east, and slightly
different in the west (component 21 is insignificant). The re-
gression coefficients in the east (not shown here) are similar
to those presented in Liu et al. [14], with components 1 and
21 having the largest positive coefficients. The regression co-
efficients in the west (not shown here) are slightly different,
probably due to a much larger sample size in the current study.
The adjusted model values (0.47 in the east and 0.40 in
the west) indicate lower model predicting power than the full
GAM. As shown in Fig. 3, the associations between
concentration and some aerosol components deviate far from
linear (e.g., fractional AODs of components 2, and 21); there-
fore, adopting a more stringent linear model form will limit
predicting power.

C. Domain Predictions

Due to MISR’s relatively low sampling frequency (approxi-
mately once a week at mid-latitudes) and data loss due to cloud
cover, it is not feasible to study the daily spatial trend.
Instead, we first aggregate predicted daily concentrations
to monthly averages, then calculate average predicted
concentrations over the two-year period using these monthly
values; this avoids overweighting the summer months, which
have more daily observations. Each 50-km grid cell has an
average of 60 MISR observations, with a range from 1 to 117.
The upper plot of Fig. 4 shows the spatial pattern of predicted

average concentrations with 167 large point sources
tons year . Predicted concentrations range

from below 0.5 g/m in west Montana to 16 g/m north-
east corner of Texas. Predicted concentrations are on
average substantially higher in the east (4.3 g/m ) than in the
west (1.5 g/m ). The lower plot of Fig. 4 shows interpolated
contours of average concentrations in 2001 and 2005,
based on IMPROVE and EPA CSN measurements. The spatial
interpolation was conducted using Kriging with an exponential
semivariogram model as implemented in IDL (ITT Visual
Information Solutions 2009). The spatial interpolation is to
help visualize the spatial patterns in the data and is not meant
to estimate the sulfate concentrations between the sites.

The large-scale spatial gradient of MISR-predicted
concentrations are consistent with the interpolated contours.
The interpolated contours show that the Ohio River Valley has
the highest sulfate concentrations where there are a number
of large coal-fired power plants. MISR predicts a mean
concentration of 6.2 g/m in this approximately 150 km

100 km region, which is in good agreement with interpolated
concentrations (5.9–6.7 g/m ). Similarly, MISR predicted

concentration in Pittsburgh (6.6 g/m ) agrees with
interpolated results. However, these prominent features are
obscured in the prediction map by many fine-scale hot spots
with higher MISR predicted concentrations. Fig. 4 shows
that many hot spots seen on top of the relatively smooth spatial
surface are near major emission sources such as large
coal-fired power plants. Since the spatial term in the GAM is
highly smooth, these hot spots arise from high MISR fractional
AODs. The potential causes for the differences between the
predicted and spatially interpolated measured concentrations
may indicate a more heterogeneous spatial pattern than
is captured by the current monitoring networks. After all, the
grid cells in our domain are over 10 times the number of ground
monitors.

However, some of predicted hot spots may be noises. This
is indicated by collocated CSN and IMPROVE monitors that
do not observe very high pollution levels. For example, MISR
predicted concentrations range from 7.5 to 9.1 g/m in
Washington DC—Baltimore region but interpolated concentra-
tions are between 5.0–5.8 g/m . In addition, interpolated con-
tours do not show any high concentrations along Lake Erie.
Other hot spots are not covered by any ground monitors, making
them difficult to evaluate. Potential sources of error include un-
certainties of the regression models, limitations in the MISR
AOD retrieval accuracy, and satellite sampling biases. Predicted

concentrations are generally biased high partially because
very low AOD values are excluded to ensure high
quality of fractional AODs. In addition, MISR data are only
available on relatively cloud-free days but the lowest SO4 con-
centrations generally coincide with cloudy days during precip-
itation events. A detailed examination of these pollution hot
spots in conjunction with regional air quality model simula-
tions should be conducted to better understand the causes of the
discrepancies.
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IV. SUMMARY

We previously developed a three-step approach using MISR
fractional AODs and GEOS-Chem aerosol simulations to
predict ground-level concentrations. In this analysis, we
advanced the original approach with a more sophisticated and
flexible GAM structure. When compared with EPA CSN and
IMPROVE measurements in 2001 and 2005, the full GAM is
able to explain 70% of the variability in concentrations.
Regional predictions using this model show consistent large
spatial patterns with interpolated contours from ground mea-
surements. Our model also identifies areas with elevated
levels, which may not be captured by simple interpolation.
Comparison with alternative models shows that GEOS-Chem
simulated aerosol vertical profiles improve model-predicting
power and reduce spatial bias by removing the impact of
long-range transport events unrelated to ground-level
concentrations. By allowing nonlinear relationships between

concentrations and fractional AODs, the GAM has
consistent model structure, and proves to be more effective
than linear models. The integration of satellite remote sensing,
global CTM, and advanced statistical modeling produces
valuable information on the spatial and temporal trends of
ground-level concentrations. Although daily predictions
are limited by satellite sampling frequency, long-term average
results provided by this method can be used to examine the
effectiveness of emission control polices and validate regional
air quality model simulations on broad spatial scales. Ideally,
such models can be more effective if additional MISR aerosol
components can be designed to match particle speciation
definitions in atmospheric chemistry models more precisely.
Further research is needed to integrate relative humidity pro-
files into the model to account for particle growth effects, to
better understand the causes of discrepancies in the spatial
patterns derived exclusively from the monitoring data and in
conjunction with the MISR AOD products, and to understand
the impact of co-linearities in the MISR AOD products on the
regression model results.
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