
Alpha-Helical Topology and Tertiary Structure Prediction in Globular

Proteins

Scott R. McAllister and Christodoulos A. Floudas

Abstract— Within the field of protein structure prediction, the
packing of α-helical proteins has been one of the more difficult
problems. Distance constraints and topology predictions can
be highly useful for reducing the conformational space that
must be searched to find a protein structure of minimum
conformational energy. We present a novel first principles
framework to predict the structure of α-helical proteins. Given
the location of the α-helical regions, a mixed-integer linear
optimization model maximizes the interhelical residue contact
probabilities to generate distance restraints between α-helices.
A hybrid global optimization approach combines torsion angle
dynamics with a deterministic global optimization technique
(αBB) and a stochastic optimization technique (conformational
space annealing) to minimize a detailed atomistic-level energy
function subject to these constraints. Several improvements to
this hybrid algorithm will also be described, including more
robust initial point selection, the incorporation of side chain
optimization techniques, and a streamlined parallel implemen-
tation. The proposed framework does not assume the form of
the helices, so it is applicable to all α-helical proteins, including
helices with kinks and irregular helices. The predictions of the
proposed overall framework on a number of proteins, including
the blind prediction of a four helical bundle designed from a
combinatorial library, are presented.

I. INTRODUCTION

The problem of protein structure prediction requires the

identification of the three-dimensional structure of a protein

given only its primary amino acid sequence. More than

42,000 structures have been experimentally-determined and

deposited in the Protein Data Bank (PDB) [1], but there are

numerous protein sequences that have yet to be studied or

cannot be studied due to limitations of the current experimen-

tal techniques. The computational task of protein structure

prediction requires searching through a vast conformational

space for the native structure. First principles protein struc-

ture prediction approaches are limited by both the complexity

of interatomic interactions and the overwhelming number

of possible conformations that a polypeptide backbone can

adopt [2]. The challenge of such a conformational search

can be met through the application of powerful algorithms,

such as the αBB branch-and-bound method for optimization

used in this work [3]–[5], along with experimentally accurate

information and models.
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Proteins composed entirely of α-helical secondary struc-

ture, α-helical bundles, are one of the more difficult classes

of proteins for structure prediction. Methods to predict the

packing and structure of these proteins have received increas-

ing attention. One approach derives distance constraints from

multiple sequence alignment information to guide Monte

Carlo searches for the native structures of small proteins

[6]. They showed that native-like protein structures could

be predicted by incorporating distance constraints into a

tertiary structure prediction algorithm that uses a lattice-

based reduced protein model.

A structure prediction strategy of identifying helical

residues that form contacts has been proposed [7]. They

divided the protein folding problem into two subproblems:

creating a fold library of possible protein structures and

choosing the best fold in the given library. The input of

generic distance restraints of 5.0 to 11.0 Å between contact-

ing helical residues was combined with a distance geometry

procedure to generate a library of possible structures for

several small helical proteins. The use of generic distance

constraints in this range was sufficient to produce many

native-like folds for each protein.

Another approach uses the prediction of triangular con-

tact patches at the helix packing interface to restrict the

conformational search [2]. They predict three-dimensional

structures using torsion angle dynamics with inputs of the

predicted secondary structure states and the predicted tertiary

contacts. This approach resulted in the production of native-

like folds for the majority of their 24 targets, with 14 of

the 15 medium-sized proteins (80-100 residues long) having

predicted structures within 6.5 Å root-mean-square deviation

(RMSD). It has been suggested that an RMSD of about 6

Å is a reasonable target for small proteins [8]. The RMSD

values from their approach were only based upon the helical

residues of the protein.

An approach has been proposed that samples the entire

conformational space of helical proteins [9]. This method

imposes rules from a database of existing structures for the

enumeration of all the geometrically possible three dimen-

sional arrangements of the helices. A small, but positive,

effect on the number of near native conformers resulted from

the use of a refinement procedure.

α-helical protein structures can also be predicted through

more general protein structure prediction algorithms. These

methods are extensively outlined in two recent reviews [10]–

[12].
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II. METHODS

Given a prediction of the α-helix locations within a protein

(which can be attained through a variety of methods [13]–

[16]), we attempt to predict the three dimensional structure

of this protein. The main thrusts of this approach are (A) the

prediction of hydrophobic residue pairs that form interhelical

contacts using a mixed-integer linear programming formula-

tion and (B) the tertiary structure prediction of the protein

using a deterministic hybrid global optimization algorithm to

minimize an atomistic level energy function.

A. α-helical Contact Prediction

The problem of α-helical topology prediction can be

separated into three main parts. First, a dataset of known

α-helical bundle proteins must be created. From this dataset,

hydrophobic-to-hydrophobic interhelical contact probabili-

ties can be developed. These probabilities are then used

in a two-level mixed-integer linear programming framework

to maximize the residue contact probabilities subject to a

number of constraints. A summary of the important details of

the approach are presented here. A more detailed description

of the method is available elsewhere [17].

1) Dataset Selection: A database PDB set of 318 helical

protein structures was compiled to generate probabilities

for specific hydrophobic-to-hydrophobic residue contacts be-

tween helices of the same helical protein. The set of proteins

was gathered from a number of sources: 20 from Table 2 of

Zhang et al. (2002) [2]; 7 from Table 1 of Huang et al. (1999)

[7]; 62 from the CATH database [18]; and 229 from the PDB

Select 25 Database [19].

2) Probability Development: The probabilities are calcu-

lated for both a contact at position i (denoted as a PRIMARY

contact) and any associated contacts in the helical wheel

position (denoted as WHEEL contacts). Figure 1 shows the

PRIMARY contacts and a subset of the possible WHEEL

contacts for an antiparallel helical interaction.

Fig. 1. Two interacting α-helices in the protein 1ROP (PDB). The helices
here interact in an antiparallel fashion. The hydrophobic residues i and j

form a PRIMARY contact and the residues (i+3), (i+4) can each interact
with (j − 3), (j − 4) to form WHEEL contacts if both residues of a given
pair are hydrophobic. All figures have been created with PyMol.20

By avoiding assumptions about the form of the helix, such

as representing the helix as a simple cylinder, the proposed

method is able to address the most difficult cases, including

irregular helices that bend or kink. In this way, representing

the problem as a set of PRIMARY and WHEEL contacts

provides a significant advantage over other methods.

The number of occurrences of hydrophobic-to-

hydrophobic minimum interhelical distances was counted

to determine the occurrence frequencies of each of the 36

possible hydrophobic pairs. The frequency for each pair

was then split into two groups, parallel and antiparallel,

based on the relative direction of the interacting helices. The

PRIMARY probabilities are calculated as the occurrence

frequency of a specific hydrophobic pair with a specific

directionality divided by the total number of hydrophobic-

to-hydrophobic contacts.

The interacting helices in the database PDB set were also

used to generate conditional WHEEL probabilities. Given

that two α-helices have a valid minimum distance PRIMARY

contact, the conditional probability that the residues on

the same side of the helical wheel form a hydrophobic-

to-hydrophobic contact was determined. These probabilities

were calculated by considering the number of hydrophobic-

to-hydrophobic WHEEL contacts and the total number of

possible WHEEL contacts for every specific helix to helix

interaction individually and calculating the probability for

each interhelical residue contact by averaging over the total

number of such contacts after the entire database PDB set

has been considered.
3) Interhelical Contact Model: Two mixed-integer linear

programming (MILP) optimization problems were formu-

lated to predict interhelical contacts. The first MILP problem,

denoted as the Level 1 Model, identifies the set of the

interhelical PRIMARY contacts that results in the maximum

probability value subject to the constraints of the model. This

set of contacts is enhanced by further selecting the set of

most probable WHEEL contacts predicted in the Level 2

Model. This second model also provides a method to choose

between results of the Level 1 model with equal probabilities.

The Level 1 Model is formulated with two sets of binary

variables that represent both the existence of any contact

between two helices as well as residue specific contacts. The

binary variables ya
mn and yp

mn are activated if the helices

m and n of the same protein interact (have at least one

PRIMARY contact) in an antiparallel or a parallel fashion,

respectively. When the hydrophobic residue pair (i, j) forms

a PRIMARY contact, the binary variables wmn
ij become

active.

Equation 1 is the objective function of the Level 1 Model.

The goal is to maximize the sum of the probable hydrophobic

contacts by activating combinations of the variables corre-

sponding to residue contacts, wmn
ij , and variables correspond-

ing to helical contacts,ya
mn and yp

mn. The probability of a

parallel or antiparallel contact is indicated by the parameters

p
p

ij;mn or pa
ij;mn, respectively.

max
∑

m

∑

n

ya
mn ·

∑

i

∑

j

wmn
ij · pa

ij;mn (1)

+
∑

m

∑

n

yp
mn ·

∑

i

∑

j

wmn
ij · pp

ij;mn

ya
mn, yp

mn, wmn
ij = {0, 1} (2)

46th IEEE CDC, New Orleans, USA, Dec. 12-14, 2007 FrA01.4

4552



The resulting product of binary variables in this equation

is nonlinear. The objective function can be reformulated as

a linear objective function by introducing a second pair of

variables, as described elsewhere [17], [21].

This objective function is subject to a number of con-

straints to restrict the predicted set of contacts to a physically

meaningful arrangement. First, the variables are constrained

by a number of residue contact rules. Every hydrophobic

amino acid of helix m, i, is restricted to have at most one

PRIMARY contact with another hydrophobic amino acid of

helix n, j. Any pairs of contacts (i, j) and (i′, j′) cannot both

be selected as PRIMARY contacts if (i′, j′) is in a WHEEL

position to (i, j). The difference between these two pairs

of contacts is also restricted to limit the size of kinks in

the protein backbone that result from a differing separation

between (i and i′) and (j and j′).

There are a number of restrictions that must be imposed on

helical interactions as well. A given helix, m, may only be

involved in a limited number of helix-to-helix interactions,

based on the number of hydrophobic residues it contains

and their positions. A minimum number of loop residues

must separate two α-helices to yield helical interactions of a

given orientation. Two helices must be restricted to interact

in a parallel or antiparallel fashion, if they interact at all, but

not both. Several constraints are also imposed to restrict the

topology of helical interactions based upon transitive rules.

Further constraints can be introduced to extend the utility

of the model. An upper limit on the number of PRIMARY

contacts that two interacting helices m and n can have is by

specified a parameter that can be varied. A second parameter

is introduced to eliminate a number of helical interactions

from the Level 1 solutions to effectively loosen the helical

packing. Obtaining a rank-ordered list of the most likely sets

of helical contacts is more desirable than a single solution.

Integer cut constraints are added into the model after each

successive solve to exclude the previous solution from the

feasible solution space.

The Level 2 objective function is formulated to select

the most probable hydrophobic WHEEL contacts based

upon a fixed set of hydrophobic PRIMARY contacts. This

maximization is also formulated as a mixed-integer linear

programming problem, which is constrained to allow a

maximum of one WHEEL contact per PRIMARY contact.

B. Tertiary Structure Prediction

1) Previous Approach: Knowledge of the secondary struc-

ture of a protein can be used to set bounds on the dihedral

angles and distances within the protein. The helical residues

are constrained with an i, (i + 4) Cα-Cα distance of 5.5

to 6.5 Å where i is a given helical residue and (i + 4) is

the residue four places away in the primary sequence. This

restraint represents the backbone hydrogen bond that results

from helix formation. For the residues that are predicted to

be helical, the backbone dihedral angles are restricted to [-

90,-40] for φ and [-60,-10] for ψ.

Predicted tertiary contacts, such as those established by the

interhelical contact model, can also be imposed as distance

constraints. These constraints are imposed to bound the Cα-

Cα distance to between 5.0 Å and 12.0 Å for the PRIMARY

and WHEEL contacts that have been predicted.

The tertiary structure prediction stage is a combination of

the αBB global optimization algorithm, a stochastic global

optimization method, and a molecular dynamics approach

in torsion-angle space [22]. The basic formulation is the

minimization of the force field energy over torsion angle

space, subject to upper and lowering bounding constraints

on these angles as well as distance constraints in Cartesian

space. A torsion angle representation of the model signif-

icantly decreases the size of the independent variable set,

while only modestly increasing the model complexity.

The use of the αBB global optimization algorithm [3],

[4], [23]–[25] guarantees the identification of the global

minimum solution by a convergence of upper and lower

bounds on the potential energy minimum. The upper bound

on the global minimum is obtained by constrained nonlinear

minimization on any protein structure. The lower bound

is determined by creating a valid convex underestimating

function and identifying its minimum function value. The

algorithm converges by successively partitioning regions of

conformational space at every level of a branch and bound

tree.

The rapid identification of feasible, low energy conformers

through torsion-angle dynamics methods can significantly

improve the performance of the αBB method. In addition,

stochastic optimization methods may further improve the

performance of the upper bounding approach of the formula-

tion. One such hybrid global optimization method, described

as an alternating hybrid, has been recently introduced [22],

[26]. It combines the deterministic αBB approach with

the stochastic approach of conformational space annealing

[27]–[31]. Conformational space annealing balances genetic

algorithm techniques of mutations and crossovers with simu-

lated annealing to identify low energy conformers. A hybrid

algorithm of this form retains the deterministic guarantees

of convergence while yielding a much more efficient search

for the native state [26].

A parallel implementation of this hybrid global optimiza-

tion approach has been developed [22]. In this approach,

two processors are allocated as control processors, to control

both the αBB iterations and the CSA iterations. The αBB

control processor maintains the lower and upper bounds as

well as a list of the lower-bounding subregions for the αBB

approach. A subset of the overall processors are assigned

αBB subproblems by the control processor, receiving a

bounded region, and performing torsion angle dynamics

followed by constrained local minimizations of the convex

lower bounding problem and of the upper bounding problem.

The CSA control processor establishes a bank of conformers

from the intermediate solutions of the αBB subproblems. The

remaining processors receive trial conformations from the

CSA control processor from this initial bank and perform

constrained local minimizations. The algorithm can then

be terminated when the control processors establish the

convergence of the lower and upper bounding problems or
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when an iteration or time limit is hit.

The ASTRO-FOLD methodology has been successfully

applied to a varied set of proteins throughout the range of

small to medium-sized proteins [5]. The recent success of

the ASTRO-FOLD method in a double blind prediction of a

four-helix bundle reinforces the value of the approach [32].

2) Algorithmic Improvements: Several improvements to

the alternating hybrid algorithm have been implemented, in-

cluding more robust initial point selection, the incorporation

of side chain optimization techniques, and a streamlined

parallel implementation. The identification of initial feasible

points is critical to the success and efficiency of the con-

strained nonlinear minimization algorithm. The basic torsion

angle dynamics routine in the initial implementation of the

framework has been replaced by a more detailed torsion

angle dynamics annealing procedure by interfacing with the

CYANA software package [33]. The number of structures

that satisfy both the distance and dihedral angle constraints

after this routine is significantly increased, especially in

the cases of distance constraints with tight bounds or large

numbers of distance constraints.

A rotamer optimization stage has been introduced in the

algorithmic framework prior to the constrained nonlinear

minimization. The goal of this stage is to remove any steric

clashes that may exist between protein side chains, especially

after mutations or crossovers have been applied through the

conformational space annealing algorithm. The algorithm is

implemented as a greedy selection of rotamer modifications

that lead to energetic improvements. With the backbone

fixed in its initial conformation, the rotamers are varied one

residue at a time and a replacement is made if any energetic

improvement is realized. In this way, rotamer optimization

acts as an efficient local minimizer, with no guarantee that

the optimal set of rotamers is chosen.

Several modifications of the parallel implementation of

the alternating hybrid algorithm have also been made. The

duties of the two control processors have been combined

and assigned to a single overall control processor. This

combination is effective because the work distributed to the

work processors requires several orders of magnitude more

time for processing than for the communication associated

with delivering the work and receiving the results. Very

little delay of the work distribution due to communication

was observed. The initial implementation of the algorithm

assigned a fixed set of processors to specific duties (αBB

iterations, CSA iterations). Since no CSA work exists until a

bank has been filled by low energy structures from the aBB

algorithm, these processors would sit idle during the first

rounds of the algorithm. This inefficiency has been removed

by initially assigning all processors to perform iterations of

the αBB method. Once the initial CSA bank of conformers

is filled, the control processor sends a message to a subset of

the work processors indicating that their duties have changed.

III. RESULTS

The proposed algorithmic framework was applied to 3 α-

helical systems. Two of these proteins, 1HTA and 1NRE, are

part of the set of test proteins for the initial evaluation of the

interhelical contact prediction model [17]. The prediction of

the third protein, S836, was done as blind test to evaluate

the method. All three structure predictions were run for 60

hours on 50 3.0GHz processors of a Beowulf cluster.

A. α-helical proteins

The Level 1 and Level 2 interhelical contact prediction

models were applied to 1HTA, a 67 amino acid protein. This

protein contains 3 α-helices and is characterized by a long

28 residue second helix. The topology predictions are shown

in Table I.

TABLE I

INTERHELICAL CONTACT PREDICTIONS FOR 1HTA

PRIMARY PRIMARY WHEEL WHEEL Helix-Helix
Contact Distance Contact Distance Interaction

5I-28L 9.1 - - 1-2 A
46L-62L 8.4 - - 2-3 A

The contact model is able to predict two tertiary contacts

that are nearby in the native structure. The first pair, residues

5 and 28, connect helices 1 and 2 with the hydrophobic

pair of Isoleucine (I) to Leucine (L). A second hydrophobic

contact of Leucine to Leucine is predicted for residue 46 in

helix 2 with residue 62 in helix 3. These two tertiary contacts,

in addition to 48 α-helical dihedral angle bounds, 14 residue-

specific loop dihedral angle bounds and 37 local i, (i + 4)
intrahelical distance restraints were imposed for the overall

tertiary structure prediction algorithm. The lowest energy

structure identified by the algorithm is presented in Figure

2, along with its alignment to the native 1HTA structure.

The RMSD between these two structures is 6.70Å. Among

the 23465 structures identified with an energy within 100

kcal/mol of the lowest energy structure was a structure with

an RMSD to the native structure of 2.58Å.

Fig. 2. Lowest energy predicted structure of 1hta (color) versus native 1hta
(gray)
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The interhelical contact prediction models were also ap-

plied to another 3 helix bundle protein, 1NRE, that contains

81 amino acids. The topology predictions are shown in

Table II. The predictions of the contact model include four

PRIMARY contacts and two WHEEL contacts. Five of the

six contacts are below 10.0Å in the native 1NRE structure.

It is noteworthy that the model is able to identify a parallel

interaction between helices 1 and 3, validating the use of

helix directionality as an important aspect of the model.

TABLE II

INTERHELICAL CONTACT PREDICTIONS FOR 1NRE

PRIMARY PRIMARY WHEEL WHEEL Helix-Helix
Contact Distance Contact Distance Interaction

25L-49L 6.0 28L-45L 9.1 1-2 A
28L-83V 12.7 - - 1-3 P
45L-85L 9.3 49L-81L 8.1 2-3 A
51I-77L 9.3 - - 2-3 A

The six hydrophobic-hydrophobic tertiary residue con-

tacts, along with 54 α-helical dihedral angle bounds, 12

residue-specific loop dihedral angle bounds and 42 local

i, (i+4) intrahelical distance restraints were imposed for the

overall tertiary structure prediction of 1NRE. The structures

presented in Figure 3 are the lowest energy structure and its

alignment to the native 1NRE structure. These two structures

have an RMSD of 6.63Å. The algorithm identified 9913

structures that have an energy within 100 kcal/mol of the

lowest energy structure. The structure in this ensemble with

the lowest RMSD to the native structure has an RMSD value

of 3.52Å.

Fig. 3. Lowest energy predicted structure of 1nre (color) versus native
1nre (gray)

B. Blind studies

The hydrophobic effect is a major driving force for protein

folding. As a result, de novo proteins have been designed

using combinatorial libraries and a binary patterning of polar

and nonpolar amino acids [34]. One such protein that was

constructed in this fashion is S836, a 102 residue protein that

has been shown to contain elements of α-helical structure

by circular dichroism (CD) spectra [35]. Furthermore, this

protein was shown to be quite stable by monitoring the

CD spectra while increasing the concentration of guanidine

hydrochloride, a denaturant.

The prediction of interhelical contacts for S836 was ex-

pected to be a challenge because the hydrophobic residues

were chosen entirely from combinatorial libraries instead

of being explicitly designed to have particular side chain

interactions. The topology predictions are shown in Table

III.

TABLE III

INTERHELICAL CONTACT PREDICTIONS FOR S836

PRIMARY PRIMARY WHEEL WHEEL Helix-Helix
Contact Distance Contact Distance Interaction

5L-99L 7.2 9L-96L 7.7 1-4 A
9L-41I 7.3 12L-37L 8.8 1-2 A
12L-92I 7.0 - - 1-4 A
16L-33V 9.7 - - 1-2 A
37L-68L 9.3 40V-64F 6.6 2-3 A
47F-60M 10.7 44I-64F 10.4 2-3 A
57L-96L 7.4 61M-92I 9.4 3-4 A
71I-82L 7.6 68L-85V 8.2 3-4 A

The predictions of the contact model yielded a total of 14

hydrophobic-to-hydrophobic residue contacts, split into eight

PRIMARY contacts and six WHEEL contacts. All but two

of these predicted contacts have distances below 10.0Å in

the native S836 structure. These 14 tertiary contacts were

imposed for the blind structure prediction of S836, along

with 77 α-helical dihedral angle bounds, 20 residue-specific

loop dihedral angle bounds and 61 local i, (i + 4) intrahe-

lical distance restraints. Figure 4 shows a superposition of

the lowest energy structure and its alignment to the S836

native structure (once we had supplied our prediction, we

received the native structure for evaluation purposes). The

predicted structure has a RMSD of 2.84Å from the native

structure. The algorithm also identified an ensemble of 18528

structures that have an energy within 100 kcal/mol of the

lowest energy structure. The structure in this ensemble with

the lowest RMSD to the native structure has an RMSD value

of 2.39Å.

IV. CONCLUSIONS AND FUTURE WORKS

A novel optimization model for predicting interhelical

contacts in α-helical globular proteins was used to generate

tertiary distance constraints. These constraints, combined

with dihedral angle and distance constraints based on sec-

ondary structure states, can then be used as part of a

tertiary structure prediction algorithm. The success of this

algorithmic approach has been illustrated on two different α-

helical bundle proteins with 3 helices and a blind prediction

of a 4-helix bundle designed using combinatorial libraries.

The ASTRO-FOLD tertiary structure prediction algorithm

has been improved by streamlining the parallel implementa-

tion, introducing an improved torsion angle dynamics routine

for more robust initial point selection, and using a rotamer

optimization stage to attain quick energetic improvements

prior to applying nonlinear constrained local minimization
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Fig. 4. Lowest energy predicted structure of S836 (color) versus native
S836 (gray)

techniques. A larger set of protein structure predictions will

be performed to further validate the method.
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