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be associated with particular obstacle categories. Subgoals
are concerned with the amount of resources to be applied
to achieve the primary goals. Boundary conditions are
given by the states themselves in combination with ob-
stacle categories, so that each problem has two centers of
interest, the associated system state and the cause of that
particular state.

CONCLUSION
In conclusion of this discussion of Problem Formulation

the Exploration of Obstacles forms the last half of the step,
being preceded by Statement Clarification. While Explora-
tion of Obstacles alone contains the generation and ranking
of problems which are the objects of the Problem Formula-
tion step of a system study, it relies basically upon a clear
interpretation of the Problem Statement as a system. It is
during Statement Clarification that the Problem Statement
is reworked from an imprecise but intuitive and idealized
description of a goal into a formal but still rather abstract
definition of a system. In this process, some concepts of
system theory and symbolic logic are useful tools: the

notion of a statement or sentence as a proposition, the
requirements of a statement which defines a system, and
the idea of the states of a system. As a final comment, it
should be noted that Exploration of Obstacles requires
methods for determining and scaling need for various
operational features in the system, and suitable theoretical
techniques cannot at this time be named. The methodology
of Exploration of Obstacles depends, then, on informal
reasonirng.
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Information Value Theory
RONALD A. HOWARD, SENIOR MEMBER, IEEE

Abstract-The information theory developed by Shannon was
designed to place a quantitative measure on the amount of in-
formation involved in any communication. The early developers
stressed that the information measure was dependent only on the
probabilistic structure of the communication process. For example, if
losing all your assets in the stock market and having whale steak
for supper have the same probability, then the information associ-
ated with the occurrence of either event is the same. Attempts to
apply Shannon's information theory to problems beyond com-
munications have, in the large, come to grief. The failure of these
attempts could have been predicted because no theory that involves
just the probabilities of outcomes without considering their con-
sequences could possibly be adequate in describing the importance
of uncertainty to a decision maker. It is necessary to be concerned
not only with the probabilistic nature of the uncertainties that sur-
round us, but also with the economic impact that these uncertainties
will have on us.

In this paper the theory of the value of information that arises
from considering jointly the probabilistic and economic factors that
affect decisions is discussed and illustrated. It is found that numer-
ical values can be assigned to the elimination or reduction of any
uncertainty. Furthermore, it is seen that the joint elimination of the
uncertainty about a number of even independent factors in a prob-
lem can have a value that differs from the sum of the values of elimi-
nating the uncertainty in each factor separately.
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NOTATION

ASPECIAL NOTATION will be used to make as
explicit as possible the conditions underlying the

assignment of any probability. Thus,

x - a random variable
A -an event
$ -the state of information on which probability

assignments will be made
{xIS} -the density function of the random variable x

given the state of information
{A| } the probability of the event A given the state of

information
(xj) - the expectation of the random variable x, which

equalsf, x{xjs}
8 = the experience brought to the problem, the

special state of information represented by total
a priori knowledge

I x|} = the density function of a random variable x
assigned on the basis of only a priori knowledge
8; designated the prior on x.

Our notation does not emphasize the difference in
probability assignment to a random variable and to an
event because the context always makes clear the appro-
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priate interpretation. We should interpret the generalized
summation symbol f used in the definition of (x 8) as an
integral if the random variable is continuous and as a
summation if it is discrete.

AN INFERENTIAL CONCEPT

A most important infererntial concept is expansion; it
allows us to encode our knowledge in a problem in the
most conveniient form. The concept of expansion permits
us to introduce a new consideration into the problem.
Suppose, for example, that we must assign a probability
distribution to a random variable u. We may find it much
easier to assign a probability distribution to u if we had
previously specified the value of another random variable v
and we may also find it easy to assign a probability dis-
tribution directly to v. In this case the expansion equation,

{uIS} = fu{v I8}{vls} (1)

equal to the diffcrencee between our bi(d b and our cost p.
Thus, profit v to our company is defined by

_
=

b- p if b < t
0 if b > (3

This equation indicates that the probability distribution of
profit given our bid { v|bg} would be trivial to determine
if we only knew our company's cost p and the lowest bid
of our competitors f, since by the expansion concept

v1,lb&} = fp,t{ vbpft p{ ,fb&. (4)

In this equation { p,f|b&4 rep)resents the joint distribution
of our cost and our competitor's lowest bid given our bid
and the state of knowledge & that we brought to the
problem. However, since we are interested only in the
expected profit by assumption we can write (4) in the
expectation form,

(v|b&) =fv,t(vfbpf&){ p,fjb&}. (5)
shows that all we have to do to find { uJS} is multiply
Ju|vO} by {v s} and sum over all possible values of the
random variable v. Alathematically this equation is no
more than a consequence of the definition of conditional
probability, but in the operational solution of inference
problems it is extremely valuable. If we want to find only
the expectation of u, (u S), rather than the entire density
function { ulS} we apply expansion in the form,

(ulS) = f,u{uls} =.rJ,rU U{VI{vJS =

fV(UIV8){VIS}. (2)
This equation shows that in this case we must only pro-
vide the expectation of u conditional on v and the proba-
bility distribution of v in order to find the expectation of u.
The inferential concept of expansion allows us to go

directly from the statemenit of an inference problem to its
solutioin in simple logical steps. It provides a link between
the formalism of probability theory and the p)ath of human
reasoning; it is a tool of thought.

A BIDIING PROBLEM

To illustrate our a)proach we shall consider a specific
problem. Suppose that our company is bidding on a con-
tract againist a niumber of competitors. We shall let p be
our company's cost of performing oin the contract; un-
fortunately, we are unicertain of this cost. We let t be the
lowest bid of our competitors, anid as you mnight expect,
this too is uncertain. Our problenm is to determinie b, our
company's bid oni the contract. Our objective in this
determinationi is to maximize the expected value of v, our
company's profit or value from the contract.

Naturally, our company will not wini the contract if its
bid b is higher than the lowest bid of our competitors f,
thus, in this case our companly's profit is zero. However,
if our bid b is less than the lowest competitive bid t our
company will obtaini the contract and will make a profit

At this point we shall makc two assumptions. The first
is that our cost p and the lowest competitor's bid t do not
depenid upon our bid b; that is,

{p,pjbj} = {p,tl&) (6)
The second assumption is that our cost p is inidependent
of the lowest competitive bid e, or,

{lp,tl} = {PI}{&0}.
With these assumptions (5r) becomes

(vIb8) = fv,f(V bpe&){ pl }I { &}.

(7)

(8)
In view of (3) we have immediately that the expectationi

of profit conditional on our bid, our cost, and the lowest
competitive bid is simply

(vIbpfI) = b- p if b < t
0 ifb> (9)

'1'he next stel) is to assign prior probability distributions
{pg}, {4181 to our cost and to the lowest competitive bid.
The probability distribution oIn our cost { pJ8} would be
based upon the information that our company had gathered
in performing similar contracts as amenided by the tech-
nical conisiderationis involved in the new contract. The
prior distribution on] the lowest (competitive bid { tl}
would be based on our experiences in bidding against our
competitors oni previous occasioIns arid on other informa-
tion such as reports in the trade press. Although we shall
not have the opportunity to digress on the subject of how
these assignments are made, suffice it to say that effective
procedures for this purpose are available.
To gain ease of computation we shall state simply that

in this problem the prior distribution on our company's
cost p is a uniform distribution betweeni zero arid one and
that our prior distributioni oii our competitor's lowest bid is
a uniform distribution betweein zero and two. These )rior
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Fig. 1. Priors on cost of performance and lowest
comnpetitive bid.
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Fig. 2. Expected profit as fuLnction of our bid.

distributions are shown in Fig. 1 along with the cumulative
and complementary cumulative distributions that they
imply. From the symmetry of the density functions we see
immediately that our expected cost (p&8) = p, is just 1/2
and that the expected lowest bid of our competitors (t 8)
is 1. However, it would be folly to assume that these ex-
pected values will occur.
We can now return to (8) and substitute these results,

(vlb&) = f5f(|vbpfE){pI8}{p1;}
= f-ffb(b - p) {pl}{(18

=fp(b - P){PJ8}&Jf>b{Jf8}
- {t>b|8}fp(b - p){pl}
= {t>b|8}(b- (pl8))
- {t>b8}(b-jP). (10)

Our expected profit, given that we bid b, is therefore the
product of the probability that our competitor's lowest bid
will exceed ours and the difference between our bid and our
expected cost. From Fig. 1 we have that our expected
profit, given that we bid b, is simply

(vlb)W (2 -b)b-2) < b < 2. (11)

Figure 2 shows this expected profit as a function of our
bid. Note that a maximum profit of 9/32 is achieved by
making the bid equal to 5/4. Of course, the same result is
obtained by setting the derivative of (11), with respect to
b, equal to zero and solving for b. Note that the expected
profit is positive for bids in the range between 1/2 and 2,

and negative for bids between 0 and 1/2. Formally,

vj &) = lMax (v| b&) = v| b = 9t=
9

= 27
b 4' 32 96' (12)

We have, therefore, found that the best bidding strategy is
to bid 5/4 and that this strategy will have an expected
profit of 9/32.

CLAIRVOYANCE

Even though we have devised a bidding strategy that is
optimum in the face of the uncertainties involved we could
still face a bad outcome. We may not get the contract, and
if we do get it, we may lose money. It is reasonable, there-
fore, that if a perfect clairvoyant appeared and offered to
eliminate one or both of the uncertainties in the problem,
we would be willing to offer him a financial consideration.
The question is how large should this financial consider-
ation be.
We shall let C represeint clairvoyance and C, represent

clairvoyance about a random variable x. Thus any proba-
bility assignment conditional on Cx is conditional on the
fact that the value of x will be revealed to us. We define
vcx as the increase in profit that arises from obtaining
clairvoyance about x. It is clear that the expected increase
in profit owing to clairvoyance about x,(vcJ|8) is just the
difference between the expected profit that we shall
obtain as a result of the clairvoyarnce (vlCx8) and the
expected profit that we would obtain without clairvoyance
(v 8); thus,

(vcxlI) = (vJCX8) - (vI8). (13)

We compute the expected profit given clairvoyance about
x,(v0Cx4), by evaluating the expected profit given that
we know x,(v|x8), for each possible value of x that the
clairvoyant might reveal and then summing this expecta-
tion with respect to the probability assignment on x, xI81,

(VICx,) = fX(v x&){x 8}. (14)

We use the prior probability distribution { x| 81 for x in this
calculation because up to the moment that the clairvoyant
actually reveals the value of x the probability that we
must assign to his statement about x is based only on our
prior knowledge 8.
By using (13) and(14) we can assign the expected value

in monetary units of eliminating any uncertainty in the
problem. We shall now apply these results to computing
the value of eliminating the uncertainty in our cost and in
the lowest competitive bid in the problem.

ANALYSIS OF CLAIRVOYANCE ABOUT OUR COST

We now determine Kvc,18), the expected value to us of
eliminating uncertainty about our cost p. From (13) and
(14) we write

(vcpl&) = (vIC(8)- (vI&) (15)

(vIC") =f5(vIp8){pI8} (16)
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(18)

The expected profit (vlpg) that we would make if we knew
our cost is just the expected profit that we would make if
we bid b and if our cost was p maximized with respect to
our bid b; that is,

(vlp) = Max (v|bp&). (17)
b

Using the assumptions of (6) and (7) we invoke the
expansion concept to write

(vl bp8) =f(vl bpf&) {I }

f{= b(b -p){f} = (b - p){C>bI&}
1

= (b - p) --(2 - b)2

Note that if we take the expectation of this equation with
respect to the prior on p we immediately obtain (11).
We determine our bid by maximizing (v bp&) with

respect to b. By setting its derivative with respect to b = 0
we find immediately that

dbKv|bp&) = 0--2 - b - (b - p) = 0, 2b = 2 + p.

b = 1 + 2 (19)

The bid should be equal to 1 plus 1/2 the value of our cost.
When we insert this result in (17) we find that the ex-
pected profit given that our cost is p is

(VIp8)= Kv b = (1 + ) p) = ( - ) (20)

Now we compute the expected profit given clairvoyance
about p from (16),

~'/g\JO =Vd~91 P' 2 7 _28
(v|Cp8) = JIp\V|/4JjPlE} - "old -2\ - 2/ 24 96'

(21)

This expected profit is 28/96, 1/96 more than we obtained
in (12) in the case of no clairvoyance. Therefore, following
(15) we have found

(KVCP8) = (VICP8)- (vl8)=96-=96 = 96- (22)

The expected increase in our profit that will result from
having our cost revealed to us by a clairvoyant is conse-
quently 1/96.

If the value of this analysis depended on the actual
existence of clairvoyance then it would have only theo-
retical interest. However, since clairvoyance represents
complete elimination of the uncertainty about a random
variable it follows that what we would pay for clairvoyance
should be an upper bound on any experimental program
that purports to aid us in eliminating uncertainty about
that variable. Thus, in the present problem the company

should not hire any cost accounting or production experts
to aid in eliminating uncertainty about p unless the cost
of these services is considerably below (vc,j,8). The concept
of clairvoyance plays the same role in analyzinig decision
problems that the concept of a Carnot engine plays in
analyzing thermodynamic problems. These theoretical
constructs provide bench marks against which practical
realizations can be tested.

ANALYSIS OF CLAIRVOYANCE ABOUT THE LOWEST
COMPETITIVE BID

Now we determine what it is worth to know the lowest
competitive bid. We write immediately,

(VctlF) = (vCQ8) - (v 8)

(v ICQ,) = ftIe(vt8ie II8}
(23)

(24)

and

(vlf&) = Mlax (v bf8). (25)

We can perform expansion in terms of our cost p just as
we did in (18) in terms of L. We write,

(v bt) =f-(vlbpe8){pl8}.
From (9) we have immediately that

v|b&) = fv(b - p){pl8} = b - p if b < t(vbf8 =
0 if b > f.

(26)

(27)

Therefore if t < p do not bid; if t > p bid t-, just below t'.
It is easy to see why this is the best bid. Since we know

the lowest competitive bid t we can get the contract by
bidding just under t. However, if t is already less than our
expected cost then we would expect to lose money by such
a strategy for it would be better nolt to get the contract
at all. Consequently, if t is less thani our expected cost p
we should not bid; while if t is greater than p we should
bid just below f. Therefore we have

|vtg) = Alax (vlbt8) = iP f f <> p (28)

The expected profit given the lowest competitive bid (,
(vjt8), is plotted as a function of t in Fig. 3. To find the
expected profit given clairvoyance about X, (vjCt8), we
integrate this function with respect to the t density func-
tion of Fig. 1 and obtain

~~V I Ct8) = f
~~~~54

(v|Q8) = ff4(v|t8){C|8} -f1%2dl (t 2).2 = 16 = 96

(29)

The expected profit given clairvoyance about t is 54/96,
twice as large as the expected profit of 27/96 obtained in
(12) where no clairvoyance was available. The expected
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KI(xt ) X p

A~~~~

Fig. 3. Our expected profit as function of
lowest competitive bid.

increase in profit with clairvoyance about t is, therefore,

54 27 27
(vcft8E = (v Cf) - (v1) = 96 - 96 = 9 (30)

By comparing (30) and (22) we see that the expected
increase in profit because of clairvoyance about the lowest
competitive bid t is 27 times as great as the expected in-
crease in profit because of clairvoyance about our cost p.
Yet the density functions for p and t shown in Fig. 1
reveal that the range of uncertainty in t is only twice the
range of uncertainty in p. Why, therefore, is information
about the lowest competitive bid so much more valuable
than information about our cost? The explanation is that
we can use information about t far more effectively in
controlling the profitability of the situation than we can
use information about our costs. If we know t then we
can control immediately whether or not we get the con-
tract, although we may still lose money even if we get it.
Knowing p prevents us from bidding on any contract that
would be unprofitable for us if we got it but is no help in
determining whether or not we will get it.

ANALYSIS OF CLAIRVOYANCE ABOUT OUR COSTS AND THE

LOWEST COMPETITIVE BID

Suppose that we are now offered clairvoyance about our
cost p and the lowest competitive bid f. What would this
joint information be worth? We let vcpf represent the
increase in profit because of clairvoyance about both p and
4. Then in direct analogy with our earlier results for clair-
voyance about a single random variable we can write

(vcpflj) = (vi Cv8) - (V18) (31)

(vIGAe) = fp,K(V Pf8) {P,CJg} (32)
and

(v|pf&) = Max (v bpte)
b

(vJpf,) {b - p if b < t
(v|bpfE) = {O if b > f. (33)

Therefore, if t < p, do not bid; if t > p, bid f-. Since
we know both our cost p and the lowest competitive
bid f we can get the contract by bidding slightly less
than t and we want it if this bid exceeds our cost p.
Consequently, our expected profit givein p and t will be
t- p if t exceeds p because we shall bid just less than ton
the contract and get it. The expected profit will be zero
if t is less than p because we shall not bid, e.g.,

P) i° If C> p\VIP/(0 if (< P. (34)

Now we substitute the results of (34) and (7) to obtain

(V CpA) = fP5f(VIPr8f){ Pg} { tg}
-fodp I=-pdl{8I(t-p)
= 1fodpfpdf(t - p) =

7
= 56

2 12 96
(35)

The expected profit given clairvoyance about both p and t
is therefore 56/96, the highest expected profit we have
seen thus far. The expected increase in profit resulting
from clairvoyance about p and 4 is, therefore

(Vcpfl-)= (Vjcpte) - (v18) = 56 - 27 - 29KvCP,4~~~)- 96 -96 =96~ (36)

The expected value 29/96 of knowing p and t jointly is,
therefore, greater than the sum of the 1/96 value of know-
ing p alone and the 27/96 value of knowing t alone. The
further advantage provided by the joint knowledge of p
and f is illustrated by the fact that now the company can
never lose money whereas in each of the two earlier cases
it could.
However, the most striking result of our analysis is the

way in which the uncertainty about the lowest competitive
bid towers over the uncertainty in our company's cost as a
concerni of management. In this problem it is worth far
more to know what the competition is doing than it is the
internal performance of our own company. You might say
facetiously that we have demonstrated the dollars and
cents payoff in industrial espionage.

CONCLUSION

The observations made in this paper have wide ap-
plication. We can treat the case where our clairvoyance
is imperfect rather than perfect. The imperfection can be
because of a statistical effect arising in nature or the result
of incompetence or mendacity or both in the source of
the information.

Placing a value on the reduction of uncertainty is the
first step in experimental design, for only when we know
what it is worth to reduce uncertainty do we have a basis
for allocating our resources in experimentation designed to
reduce the uncertainty. These remarks are as applicable to
the establishment of a research laboratory as they are to
the testing of light bulbs.

If information value theory and associated decision
theoretic structures do not in the future occupy a large
part of the education of engineers, then the engineering
profession will find that its traditional role of managing
scientific andi economic resources for the benefit of man
has been forfeited to another profession.
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