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AIRS Near-Real-Time Products and Algorithms in
Support of Operational Numerical Weather Prediction
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Abstract—The assimilation of Atmospheric InfraRed Sounder,
Advanced Microwave Sounding Unit-A, and Humidity Sounder
for Brazil (AIRS/AMSU/HSB) data by Numerical Weather Pre-
diction (NWP) centers is expected to result in improved forecasts.
Specially tailored radiance and retrieval products derived from
AIRS/AMSU/HSB data are being prepared for NWP centers.
There are two types of products—thinned radiance data and
full-resolution retrieval products of atmospheric and surface
parameters. The radiances are thinned because of limitations in
communication bandwidth and computational resources at NWP
centers. There are two types of thinning: 1) spatial and spectral
thinning and 2) data compression using principal component
analysis (PCA). PCA is also used for quality control and for
deriving the retrieval first guess used in the AIRS processing
software. Results show that PCA is effective in estimating and fil-
tering instrument noise. The PCA regression retrievals show layer
mean temperature (1 km in troposphere, 3 km in stratosphere)
accuracies of better than 1 K in most atmospheric regions from
simulated AIRS data. Moisture errors are generally less than
15% in 2-km layers, and ozone errors are near 10% over approx-
imately 5-km layers from simulation. The PCA and regression
methodologies are described. The radiance products also include
clear field-of-view (FOV) indicators. The residual cloud amount,
based on simulated data, for FOVs estimated to be clear (free of
clouds) is about 0.5% over ocean and 2.5% over land.

Index Terms—Atmospheric retrieval, atmospheric soundings,
eigenvectors, hyperspectral, infrared, microwave, principal
components, satellite remote sensing.

I. INTRODUCTION

T HE Atmospheric InfraRed Sounder (AIRS) is the first
of a new generation of high spectral resolution infrared

sounder with 2378 channels measuring outgoing radiance
between 650 and 2675 cm. The improved vertical resolving
power of the AIRS is expected to greatly improve the accuracy
of temperature and moisture soundings. Details on the AIRS
instrument and performance are given in [1], [2]. The AIRS is
accompanied by two microwave sounders, the Advanced Mi-
crowave Sounding Unit-A (AMSU-A) and Humidity Sounder
for Brazil (HSB) [2]. AIRS temperature and moisture soundings
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(retrievals) will have vertical resolutions of 1–2 km, instead
of 3–5 km from current National Oceanic and Atmospheric
Administation (NOAA) operational sounders—such as the
High Resolution Infrared Sounder (HIRS) [3], AMSU-A and
AMSU-B. The three NOAA instruments are often referred to as
the Advanced TIROS Operational Vertical Sounder (ATOVS).
The HSB is essentially the same as the NOAA AMSU-B
instrument without the 89-GHz channel. Details of the NOAA
ATOVS instruments can be found in [4]. Because forecast skill
is dependent on the quality of the information that is assim-
ilated into the forecast model, AIRS/AMSU/HSB products
are expected to improve weather forecasts [5]. Over the past
decade there have been many improvements in the assimilation
of satellite data into forecast models. Major NWP centers have
replaced atmospheric temperature and moisture soundings
(i.e., retrievals) in forecast models with directly assimilated
calibrated clear radiances [6]–[9]. For current operational
sounders, assimilating radiances from 20 or so channels and not
having to account for a retrieval’s vertically and horizontally
correlated errors is very attractive. However, it becomes less
attractive with 2000 AIRS channels. Even though major NWP
centers will assimilate radiances, the retrieval products are
needed by forecast centers assimilating retrievals and by those
studying differences between radiance and retrieval assimi-
lation (e.g., Goddard’s Data Assimilation Office). Retrievals
can be an important source of information for nowcasting
applications and for validation of model analyses and forecasts.
For severe weather forecasting applications, three-dimensional
thermal and moisture fields at the sounder resolution and in
near-real-time can provide important diagnostic information.

In 1999, there was a significant improvement in forecast
skill due to the assimilation of radiances from the AMSU-A
onboard NOAA-15 and NOAA-16 satellites [9]–[11]. The first
AMSU-A on NOAA-15 was launched in 1998. The improve-
ment can be traced to two main reasons. First, the AMSU-A has
very good vertical coverage, although not vertical resolution,
from the surface to the upper stratosphere. Second, a large
percentage 90 of the data can be assimilated, since most
of the microwave atmospheric sounding channels are not
sensitive to nonprecipitating clouds. Prior to AMSU-A, the
primary observations for sounding the atmosphere were from
the HIRS. Only 10% of HIRS data are assimilated due to cloud
contamination. The improvement in 1999 was mostly due to
the use of AMSU-A in cloudy regions. AIRS observations will
provide much better vertical resolution than AMSU-A and
HIRS combined, but are still affected by clouds. It is important
how AIRS data are assimilated in NWP models. If only clear
fields of view (FOVs) are used, then only about 5% of the
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data will be assimilated and the forecast impact will likely be
limited.

AIRS radiances can be assimilated in the following three
forms:

1) radiances that are not affected by clouds;
2) cloud-corrected (cloud-cleared) radiances [12]–[16];
3) cloud-contaminated radiances [17].

As discussed in [16], the coverage expected from AIRS cloud-
cleared radiances is at least 50%. The use of cloud-contami-
nated radiances is strongly dependent on the ability of the NWP
model to predict cloud optical properties, so cloud-contami-
nated radiances are not widely used. While most centers will
use clear radiances, consideration should be given to assimilate
cloud-cleared radiances because of the much higher yield. With
respect to retrievals, the AIRS product generation system will
produce retrievals from cloud-cleared radiances. For overcast
cases, the retrievals are derived from the AMSU-A and the HSB
microwave observations and AIRS observations that are not af-
fected by clouds. A complete description of the retrieval process
is described in [1] and [16].

The purpose of this paper is to describe the data that will
be provided to NWP centers in near-real-time, generally
within three hours from the satellite observation time, and to
provide details of algorithms we have developed for the AIRS
processing system. Primarily these include tests to determine
if an AIRS field of view (FOV) is clear, i.e., free of clouds,
and the use of principal components for data compression,
quality control, noise filtering and estimation, and regression
retrievals. The regression retrieval is used for the first guess
in the AIRS final retrieval. The regression retrieval is com-
putationally very fast and can be generated directly from the
principal component score dataset, which is available to NWP
centers in near-real-time. A fast retrieval may possibly provide
NWP centers the capability to find regions over the globe
where assimilating AIRS products would be important (i.e.,
places where the regression retrieval differs greatly from the
forecasts). The use of a regression “filter” may be important for
those centers where the assimilation of AIRS from all global
regions is a computational burden.

II. AIRS NEAR REAL-TIME PRODUCTS

The initial constraint in providing AIRS NWP products in
near-real-time is data volume size. AIRS/AMSU/HSB level
1b data are about 2.5 GB for a 100-min orbit in comparison
to the approximately 14 MB per orbit from ATOVS (HIRS

4.5 MB, AMSU-A 2 MB, AMSU-B 7.5 MB). Each
6-min granule consists of 90 AIRS and HSB FOVs per scanline
and 30 AMSU-A FOVs per scanline. There are 135 AIRS
and HSB scanlines per granule, 45 AMSU-A scanlines per
granule, and 240 granules per day [1]. A simple solution to
the relatively high volume of AIRS/AMSU/HSB is to increase
available communication bandwidth. But that option is costly,
and presently NWP centers cannot assimilate all the data due
to computational costs and limitations in storing the data. So
one solution is to thin the radiance data. The level 2 product
files will not have to be thinned. The level 2 product includes

atmospheric temperature, moisture, and ozone profiles, surface
temperature, surface emissivity/reflectivity, and cloud height
and amount [1], [16]. The AIRS/AMSU/HSB data will be
thinned into several datasets described in Section II-A–D. Each
file contains the results of the cloud detection tests discussed
in Section III-E. Also each file has ancillary information such
as quality indicators, time, latitude, longitude, and satellite and
solar viewing geometry.

A. Thinned Radiance Data—Single FOV

A diagram of the FOVs for AIRS, AMSU-A, and HSB and the
cross-track scan pattern of the three instruments can be found in
[1]. Visually, each AMSU-A FOV, which has a spatial resolu-
tion of approximately 42 km on earth near the nadir view posi-
tion, contains a 3 3 array of AIRS and HSB FOVs, each with a
spatial resolution of approximately 14 km. The AIRS and HSB
FOVs are spatially coincident. The data are thinned by subsam-
pling FOVs and channels. A subset of about 300 channels (the
set has not been finalized) is extracted from the center AIRS
FOV of the 3 3 array, as well as all 15 AMSU-A channels and
the four HSB channels from the center HSB FOV. Each granule
has two files, each containing data from alternate center FOVs.
The size of each file is about 0.5 MB. An orbit’s worth of data
is about 16 MB, which is only about 15% greater than the full
ATOVS data. The method of channel selection is described in
[16] and retrievals derived from the subset have been shown, in
simulation, to satisfy all 2000 AIRS channels to within the es-
timated instrument noise.

The single FOV thinned radiance dataset is the core data that
will be used by most centers assimilating AIRS radiances. The
files are available in BUFR and HDF formats.

B. Thinned Radiance Data—9 FOVs

The number of channels in this dataset is the same as the
single FOV radiance dataset. The main difference is that in-
stead of the center FOV, all nine AIRS and HSB FOVs from
every other AMSU-A FOV are included. The file size for a
6-min granule is about 4.5 MB, and one orbit’s worth of data
is about 70 MB. Having all nine FOVs will allow users to gen-
erate their own cloud-cleared AIRS radiances. This dataset was
specifically requested by the Goddard Data Assimilation Office
(DAO).

C. Principal Component Data—Single FOV

The principal component score file is thinned spatially in the
same manner as the single FOV radiance file. However, instead
of the subset of AIRS channels, there are 200 principal scores.
All AIRS channel radiances can be reconstructed to the noise
level of AIRS from the principal component scores. Details are
provided in Section III-A. A measure of how well the channels
can be reconstructed is also provided. This measure, referred
to as the reconstruction score, is a single value that gives an
overall indication of how well the reconstructed radiances agree
with the actual radiances. A reconstruction of less than unity
indicates that overall the radiances are reconstructed within the
instrument noise level of the observed radiances.
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D. Cloud-Cleared Data

The level 2 processing system also generates cloud-cleared
radiances and cloud-cleared principal component scores. These
data will be available in both HDF and BUFR format and will
be very similar in format to those described in Sections II-A and
C.

III. A LGORITHMS AND RESULTS

This section describes the algorithms that we developed in
support of the AIRS radiance and level 2 products. As men-
tioned earlier the algorithms include 1) principal component
analysis for data compression, quality control, noise filtering
and noise estimation, and regression level 2 products and 2)
AIRS FOV clear detection. The AIRS Science Team developed
a simulation package to aid in the development and improve-
ment of algorithms [18]. The simulations include variable
surface emissivity and clouds. We have used this simulation
package to generate AIRS/AMSU/HSB data in near-real-time
since April 2000. The simulated data have been invaluable for
developing and testing the processing and distribution systems.
The NWP centers benefitted from the real-time simulated data
by being able to develop the necessary software needed to
assimilate AIRS/AMSU/HSB in advance of the real data.

A. Principal Component Analysis

Principal component analysis (PCA), also called eigenvector
decomposition, is often used to approximate data vectors having
many elements (e.g., AIRS observations of 2000channels)
with a new set of data vectors having fewer elements, while
retaining most of the variability and information of the orig-
inal data. The new data vectors are called principal component
score vectors, and because they consist of the components of
the original data vector in an orthogonal coordinate system, the
elements of a given principal component score vector are inde-
pendent of each other (unlike the original spectrum). Principal
component analysis has been used in sounding applications as
described in [19] and [20], and recently it has been described in
[21] for high spectral resolution infrared sounders. Elements of
a principal component score vector are projections of the spec-
trum onto each of the orthogonal basis vectors, which are the
eigenvectors (principal components) of the radiance covariance
matrix. The total number of eigenvectors is equal to the total
number of channels. However, it will be shown that a much
smaller set of eigenvectors 100 , ordered from largest to
smallest eigenvalues, is sufficient to explain most of the variance
in the original spectra. The covariance matrix is derived from an
ensemble of AIRS normalized spectra, i.e., radiance divided by
the instrument noise. The matrix of eigenvectorsis related to
the covariance matrix by

(1)

where , , and are all dimensioned , and is a diagonal
matrix of eigenvalues. The principal component scores vector
is computed from

(2)

Fig. 1. Cumulative explained variance as a function of the number of
eigenvectors.

where is the vector of centered (departure from the mean)
normalized radiances. Equation (3) is used to reconstruct the
radiances from a truncated set ofeigenvectors and a vector
of principal component scores (the symbol indicated that
the matrix or the result of a matrix operation is due to truncated
set of vectors)

(3)

The normalized reconstructed radiance vector is; has di-
mension ; and the vector has length . To obtain the
unscaled radiance, one must add the ensemble mean normalized
radiance used in generating the covariance matrix and multiply
the sum by the noise used in constructing the normalized radi-
ances.

Fig. 1 shows the explained variance of the data with respect
to the number of eigenvectors. The eigenvectors were gener-
ated from all-sky (cloud-contaminated) AIRS radiances simu-
lated from the six-hour NCEP forecast for December 10, 2000.
The explained variance is simply the accumulation of the eigen-
values normalized by the sum of all eigenvalues. Fig. 1 shows
that nearly 100% of the variance is explained with only ten
eigenvectors. This number is often referred to as the number
of independent pieces of information. However, ten eigenvec-
tors are insufficient to reconstruct the radiances within the in-
strument noise level. A better way to determine the number
of eigenvectors is to look at the square root of the eigenvalue,
shown in Table I. The square root of the eigenvalues is equiva-
lent to the standard deviation of the principal component scores
of the dependent ensemble. Since we are using normalized ra-
diances, the square root of the eigenvalues can be interpreted
as signal-to-noise. Principal component scores can be thought
of as superchannels, since each one is a linear combination of
all channels. The first score contains the largest SNR, which as
shown in Table I is very large. When the eigenvalues fall below
unity, the noise has larger contribution than the signal. One can
argue that no more than 60 or so eigenvectors should be used for
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TABLE I
SQUARE ROOT OF THEFIRST 72 EIGENVALUES

reconstructing AIRS spectra. By using a truncated set of eigen-
vectors much of the noise in the original measurement can be
removed. (We decided to save and distribute 200 principal com-
ponent scores to assure that there was sufficient information to
reconstruct real AIRS data.)

The noise filtering aspect of reconstructing radiances using
PCA is still being studied. The results are very promising.
Fig. 2 shows the AIRS instrument noise at scene brightness
temperature, and the rms difference between reconstructed
brightness temperatures, from 60 principal component scores,
and noise-free simulated brightness temperatures. To compute
these results, we simulated brightness temperatures from a
global ensemble with and without expected instrument noise.
The reconstructed brightness temperatures are computed from
the instrument noise-contaminated data. The original noise
curve in Fig. 2 is simply the rms difference of the two datasets
(noise and noise-free). The rms difference between the recon-
structed brightness temperatures and the noise-free simulated
brightness temperatures is extremely small in comparison to
the instrument noise. The reconstructed data are more similar
to noise-free observations. More work is needed to study the
impact of using reconstructed radiances in a retrieval algo-
rithm or in radiance assimilation. Since the reconstructed rms
difference is very small, we can use the reconstructed data to
estimate the noise. This is done by simply computing the rms
difference between the reconstructed brightness temperatures
and the original noisy data. The difference between the original
noise curve in Fig. 2 and the noise estimate using PCA is shown
in Fig. 3. The difference is extremely small and therefore this
technique can possibly be used as a procedure to estimate
instrument noise.

An overall measure of how well the principal component
scores can reconstruct the original data is provided by the re-
construction score (RS) which is defined as

(4)

Fig. 2. RMS difference of noise minus noise-free brightness temperatures
(scene noise) and rms of reconstructed brightness temperatures from 60
principal component scores minus noise free brightness temperatures.

Fig. 3. Difference between the rms of reconstructed brightness temperatures
from 60 principal component scores minus noise-contaminated brightness
temperature and the scene noise (Fig. 2).

where and are the noise-scaled observed and reconstructed
radiances, respectively, for theth channel, and is the total
number of channels used in the principal component analysis. A
reconstruction score of less than one indicates that the root-mea-
sure-square difference over the number of reconstructed chan-
nels is within the noise level. Large reconstruction scores also
can be used to identify suspicious data. The mean reconstruction
score using 200 principal component scores, for a global en-
semble, is about 0.96 with a standard deviation of 0.2. Fig. 4(a)
and (b) shows the RS as a function of eigenvector; Fig. 4(b) is
an expanded view of Fig. 4(a). Here we see that unity is reached
near the 60th eigenvector. One can either examine the eigen-
values or RS to estimate the number of principal component
scores needed to reconstruct the radiances to the noise level.

PCA compression provides a way to reconstruct entire AIRS
spectra from a much smaller set of data. The eigenvectors are
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(a)

(b)

Fig. 4. Reconstruction score as a function of the number of eigenvectors.

provided in a separate dataset and are static until a new set is
computed (see Section III-D). The complete spectra can then
be reconstructed. Section III-B discusses principal component
regression which provides the initial state for the final physical
retrieval [13]. It can also be used as a standalone retrieval.

B. Principal Component Regression

Principal component regression simply uses principal com-
ponent scores for predictors in least squares regression. For
AIRS, we use 60 principal component scores for predictors and
solve for atmospheric temperature, moisture, ozone profiles,
and surface temperature and surface emissivity. With 2000
channels, many of the channels are similar to each other,
making the covariance matrix nearly collinear. A significant
advantage for using 60 principal component scores instead of
all 2000 channels is that the inverse of the predictor matrix is

more stable and less collinear. Another advantange is that the
regression solution is computationally fast. In matrix notation,
the form of the regression coefficients, dimensioned
number of parameters by thenumber of principal component
scores, is

(5)

where is a training-dependent predictand ensemble matrix,
of dimension by sample size . , the training predictor
ensemble matrix, is dimensionedby . On independent data
the -dimensioned solution vector is obtained from the matrix
multiplication of , where is the independent vector of
principal component scores of length.

For this paper, regression coefficients were derived from sim-
ulated AIRS data. In practice, the use of simulated data to gen-
erate “synthetic” regression coefficients for application on ob-
served data may lead to large biases in the retrieval due to dif-
ferences between measured and simulated spectra. The AIRS
physical retrieval may require a radiance bias adjustment to ac-
count for these differences. Initially, the regression coefficients
will be based on observed (clear and/or cloud-cleared) principal
component score vectors collocated with estimates of the true
atmospheric profiles and surface properties, and therefore the
solution will need no adjustments to account for differences be-
tween measured and computed spectra. Clear observations will
be determined using tests described in Section III-E. Deriva-
tion of cloud-cleared radiances from FOVs containing broken
clouds is described in [16]. If it is later shown that biases be-
tween measured and computed spectra can be easily accounted
for, then the regression coefficients will be derived from sim-
ulated data (i.e., synthetic regression). If “observational” re-
gression (i.e., collocated “truth” and observed AIRS) is used to
generate coefficients, then “truth” data will come from collo-
cated radiosonde data or NWP analysis fields. The sparsity of
radiosondes will require several months of data to generate a
training dataset. The use of analysis fields has the advantage that
only one day of data is sufficient to generate coefficients. How-
ever, the tradeoff is that the analysis field may have large errors
in certain regions. We plan to exclude data from those regions
of the analysis field where the absolute differences between
the simulated (from NWP model data) AMSU/HSB brightness
temperatures and the observed AMSU/HSB brightness temper-
atures are greater than a predetermined threshold. The threshold
will be channel dependent. Synthetic regression will be used for
geophysical parameters where the “truth” for the predictands
in (5) is not available or extremely sparse (e.g., surface emis-
sivity, skin temperature, upper stratospheric temperature, upper
atmospheric water vapor). In the case of collocated radiosondes,
synthetic regression is used above the nominal vertical extent of
radiosondes (about 10 mb).

AIRS viewing geometry changes along the scanline. Coeffi-
cients are computed for different ranges of viewing geometry
to account for the limb effect. The limb effect is due to the in-
creased absorption due to the increase in optical path. The mea-
surements become more opaque with increasing scan angle. We
divided the AIRS data in intervals of 0.1 of the cosine (scan
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Fig. 5. Comparison of regression retrieval temperature rms errors from AIRS
and ATOVS.

angle). There are four intervals. Each interval and all geophys-
ical parameters use the same predictors: 60 principal compo-
nent scores, unity minus cosine (scan angle), and side of scan
(one for left, zero for right). The side of scan is used to account
for possible scan asymmetries in the observations. It should be
pointed out that an earlier form of the regression used limb ad-
justed principal component scores. This approach worked quite
well in simulation; however, in practice, the limb adjustment
coefficients may need to be based on real data and would re-
quire considerable resources to collect the data to generate the
coefficients. It was shown in [22] that the limb adjustment for
AMSU-A resulted in adjusted observations that were nearly in-
distinguishable from nadir values. Theoretically, limb adjusting
AIRS should work extremely well because AIRS has so many
overlapping weighting functions. We have not ruled out this op-
tion, but we prefer the current approach because we should be
able to produce acceptable regression retrievals very quickly
after the AIRS level 1 b data have been verified.

Figs. 5 and 6 show a comparison of expected regression tem-
perature and moisture profile accuracy, respectively, from AIRS
and ATOVS. The results are based on simulated radiances. The
ensemble used was obtained from a collection of radiosonde at-
mospheric temperature and moisture profiles and Dobson sta-
tions for atmospheric ozone. The upper stratospheric temper-
atures were obtained from rocketsondes. Surface temperature
was derived from the HIRS window channels. Random sur-
face emissivity with a mean of 0.98 and a standard deviation of
0.1 was used over land. The Masuda surface emissivity model
[23] was used over ocean. Appropriate instrument noise values
were added to the simulated radiances. The dashed line in both
curves shows the required performance. The temperature accu-
racy from AIRS, as expected, is much better than from ATOVS.
The use of a physical retrieval [16] considerably improves the
lower tropospheric temperatures. The moisture accuracy from

Fig. 6. Comparison of retrieval water vapor rms percent error from AIRS and
ATOVS.

AIRS is significantly better than those from ATOVS. AIRS has
near-continuous moisture information between 6 and 8m at
high spectral resolution, whereas ATOVS has only a few rela-
tively broad channels. Fig. 7 show ozone performance. In this
figure, the mean, in Dobson, and standard deviation of the mean,
in percent, are shown, along with the retrieval accuracy. Overall,
the ozone retrieval has an error of about 10% at the standard
Umkehr layers ( 5-km thickness). The total integrated ozone
layer is about 3.5%. The above results are for clear conditions.
Retrieval performance from cloud-cleared radiances is reported
in [16].

The AIRS Science Team simulation of December 15, 2000
was used to test our surface emissivity regression retrieval. De-
tails on the modeling of land surface emissivity in the simula-
tion are described in [18]. Fig. 8 shows the standard deviation
of the true emissivity and the retrieval error for December 15,
2000 for land surfaces. The overall emissivity retrieval error is
within 0.5% of the “true” emissivity used in the simulations.
Over ocean, the Masuda surface emissivity model is used. The
surface skin temperature error for all surfaces, based on clear
simulations, is approximately 0.3 K.

C. Local Angle Adjustment

An array of 3 3 AIRS FOVs within an AMSU-A FOV is
used to cloud-clear AIRS radiances under conditions of broken
clouds. The 3 3 array has three columns of three AIRS ob-
servations. Each column has a different view angle. The cloud-
clearing algorithm [16] assumes that differences between the
nine FOVs are only due to clouds. Therefore, differences due
to viewing geometry must be removed. The observations from
each of the outer columns are adjusted to the angle of the middle
column. Principal component regression is used to derive the
local angle adjustments.
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Fig. 7. Ozone retrieval rms percent errors (dashed), background error in
percent (thin line), and mean ozone for ensemble (thick line).

The AIRS local angle adjustment is based on simulated
values. That is, a sample of profiles was used to calculate
radiances for multiple cloud conditions and angles to pro-
duce regression coefficients that use the observed principal
component scores to predict the angle adjustments. We made
an important improvement in our simulation. When we first
calculated adjustments, we noted that the adjusted error for the
center angles was significantly larger than the adjustment itself,
which is nearly zero for adjacent spots near the center of the
scan. We then realized that the original simulation was flawed
in the way the instrument noise was handled. What should be
simulated is the measurement that would have been observed
had the instrument been observing at a different angle with
all other parameters the same. This means that the noise that
would have been observed at the new angle is the same as the
one that was observed at the given angle. To create this feature,
a single noise value was used for all angles for a given profile.
The noise changed with profile, cloud, etc. in the usual way.
This seems like a small detail, but it had a significant effect on
the accuracy of the angle adjustments. In particular, the error in
the adjustments for the center spots became consistent with the
size of the observed angle effects in that it was no longer larger
than the largest expected correction.

D. Updating of Eigenvectors and Regression Coefficients

Our strategy for updating eigenvectors and regression coef-
ficients starts from an initial training set. Those eigenvectors
and coefficients are then referred to as the static set. We will
first discuss updating the regression coefficients. New principal
component score regression coefficients will be generated peri-
odically, perhaps daily if the NWP model is used for training the
regression retrieval. However these coefficients are never used
to derive the “official” product, they’re only used to monitor the
static coefficients and to find outliers that may need to be added

Fig. 8. Standard deviation of emissivity spectra in training ensemble and the
standard deviation of the emissivity retrieval error.

to the original training. Results from the new coefficients will be
compared in an offline mode with results based on the static co-
efficients. If a certain number of outliers are found, those that are
more than 2.5 standard deviations away from the mean and with
populations much greater than expected from a normal popula-
tion, then the outlier population is added to the static training set
and coefficients are regenerated.

The data used for generating the eigenvectors are derived
from an offline dataset consisting of three of the 135 scan-
lines per granule (scanlines 2, 47, and 92). There are 240
6-min granules per day and each scanline contains 90 AIRS
FOVs. We use every third AIRS spots from spot 2 through
89, which matches the spatial sampling provide in the single
FOV dataset, described in Section II-A. So each day there are
21 600 spectra (30 3 240), and from that set we select a
smaller subset that is approximately one third of the 21 600.
Eigenvectors are computed daily, but they are only used to
monitor the representativeness of the static set of eigenvectors
by comparing reconstruction scores derived from the static
and updated eigenvectors. We have tested this approach in our
near-real-time system, based on simulated data, and found that
the first update of the static set occur in about three weeks with
the frequency gradually reducing to the point that in six months
there is no need to further update the static set (assuming that
the AIRS instrument remains stable).

E. Detecting Clear Fields of View

The determination of cloud-free AIRS FOVs is very impor-
tant for two important reasons. First the initial testing of the
AIRS retrieval package after launch will be done on clear-only
FOVs. The determination of these clear FOVs is important for
the initial generation of regression coefficients. Second, some
NWP centers will assimilate only FOVs that are free of clouds.
A clear FOV indicator is included in the product files. The
methodology to determine clear FOVs differs between ocean
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and land surfaces. The following two subsections will discuss
them. It should be noted that AIRS also has a visible/near
infrared (Vis/NIR) instrument with a spatial resolution on the
ground of about 2.28 km. As discussed in [24], the Vis/NIR
instrument can provide information on cloud contamination
within the approximately 14-km AIRS FOV. An AIRS Vis/NIR
cloud indicator will also be available in the product files. This
paper will address cloud detection based only on AIRS and
AMSU-A observations. The cloud detection tests can be con-
sidered preliminary, since they were developed with simulated
data. The utilization of real AIRS data will likely lead toward
the development of additional tests, which were not developed
because of limitations in the simulated data. For example, the
AIRS simulations did not include realistic spectrally varying
cloud emissivity, so tests examining spectral characteristics of
clouds were not developed.

1) Clear Detection Over Ocean:Clear detection over ocean
involves five different tests. The FOV must pass all five tests to
be declared clear. Test 1 simply checks if brightness tempera-
ture at a single longwave window channel at 965.43 cmis
warmer than 270 K. (Note that the channel frequencies will be
slightly different for the real AIRS observations.) If it is less
than 270 K, it is almost certain that clouds are present, since the
freezing temperature of sea water is near 271 K. Test 2 checks
the difference between the sea surface temperature (SST) from
the NCEP six-hour forecast with a nearly transparent shortwave
window channel at 2616.095 cm. The 2616-cm channel is
the most transparent AIRS window channel. The atmospheric
component is less than 0.5 K, and the instrument noise is very
low (less than 0.05 K for a surface temperature of 280 K). Tests
involving this channel can only be performed with night data
due to solar contamination. If the brightness temperature from
the 2616-cm channel is more than some threshold (e.g., 1 K)
colder than the SST, it is assumed that there are some clouds
in the FOV. Tests 3 and 4 use least squares regression to pre-
dict the 2616-cm channel from several 8- and 11-m split
window channels, respectively. The 8-m channels used are at
1218.36, 1228.09, 1236.40, and 1251.21 cm, and the 11-m
channels used are at 918.65 and 965.32 cm. The channels
were selected by stepwise regression. The 2616-cmchannel
can be predicted from either the set of 8- or 11-m channels
with an accuracy of about 0.5 K. Both regressions also use co-
sine(scan angle) as an additional predictor. Because of the non-
linear relationship between Planck radiance and temperature in
the infrared, the 2616-cm channel is less sensitive to partial
cloudiness than the 11- and 8-m channels. For example given
50% single cloud cover with a cloud-top temperature of 220 K
and a surface temperature of 280 K, the brightness tempera-
ture at 2616.10, 1251.21, and 918.65 cmare 266.7, 258.6,
and 255.8, respectively. The brightness temperatures from the
2616-cm channel, and the longwave window channels are
similar only for clear sky and uniform overcast conditions. So
if the difference between the predicted 2616-cmchannel and
the observed is greater than some threshold, then the FOV is
not clear. The 11- and 8-m channels are used separately be-
cause it was observed when used together the different degree
of Planck nonlinearity of the 11- and 8-m channels would ac-
tually predict the 2616-cm channel brightness temperature

(a)

(b)

Fig. 9. Cumulative distribution function of the difference between SSTs and
the brightness temperatures observed by the 2616-cmchannel.

very accurately in conditions of low cloud amount. Test 5 pre-
dicts the NCEP SST from 8- and 11-m split window chan-
nels (used together in the prediction). The predictor channels
are 918.65, 965.32, 1228.09, and 1236.40 cm. Again cosine
(scan angle) is used as an extra predictor. If the predicted SST
is colder than the NCEP SST, then the FOV has cloud con-
tamination. The selection of thresholds for the above tests can
be estimated using cumulative distribution functions. For ex-
ample, Fig. 9(a) and (b) shows the cumulative distribution func-
tion of the difference between SSTs and the brightness temper-
atures observed by the 2616-cmchannel (test 2). If 5% of the
ocean is assumed clear, then this approach would select 0.9 K
as the threshold. We plan to use Moderate-Resolution Imaging
Spectroradiometer (MODIS) cloud mask to determine the ex-
pected percentage of clear data at the AIRS spatial resolution.

The above tests were applied to AIRS/AMSU/HSB data sim-
ulated for December 15, 2000. Only 4.5% of the total number of
FOVs passed the clear tests The simulations included two layers
of clouds and the overall mean cloud amount was 45% with a
standard deviation of 33%. The mean residual cloud fraction in
the FOVs detected as clear is near 0.006 (1total overcast)
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Fig. 10. Histogram of residual cloud amount for cases passing the clear test.

and the standard deviation is about 0.009. A histogram of the
residual cloud amount is in Fig. 10.

2) Clear Detection Over Land:Greater uncertainty in
land surface emissivity and relatively poor forecast surface
temperature from land surfaces prevents the use of the tests
that were developed for AIRS data over the ocean. The land
tests make use of AMSU-A and the spatial variability of the
3 3 AIRS FOVs in the AMSU-A FOV. Test 1 predicts a
single AIRS channel at 2390 cm from AMSU-A channels
4 though 6. The coefficients are derived from simulated data.
The 2390-cm channel can be predicted from AMSU-A with
an accuracy of about 1 K. The weighting function for this
particular AIRS channel, which has a peak value near 850 mb,
is given in Fig. 11. The 2390-cm channel is ideal, because it
is predominately affected by temperature; contamination from
water vapor and other trace gases is negligible. Simulations
have shown that this channel is only marginally affected by
solar contamination 0.1 K for clear conditions. Ideally,
a channel peaking lower in the troposphere would be better
for detecting very low altitude clouds. However, predicting
near-surface AIRS channels would require the use of AMSU-A
window channels. The large variability of the AMSU-A
window channels due to variations in cloud liquid water and
surface emissivity result in a very poor prediction5 K of
near-surface AIRS channels. Test 1 compares the predicted
2390-cm channel with the observed, if the observed is
colder by some threshold (e.g., 2 K) then the AIRS FOV is
not cloud-free. For overcast conditions during the day, solar
contamination can result in a warm brightness temperature. To
avoid false detection of clear FOVs due to solar contamination
of the 2390-cm channel in presence of clouds, Test 2 was
added to compare the difference of brightness temperatures
from 2558.23 and 937.81 cm. If the difference is greater than
10 K, the FOV is not cloud-free. Experiments have found that
FOVs with very low level clouds are often not detected. This
of course was expected, since the 2390-cmchannel peaks
near 850 mb. To improve the detection of very low clouds,
Test 3, the coherence test, computes the standard deviation
of the 3 3 array of the 2390-cm channel radiance within
the AMSU-A FOV. Radiance is used instead of brightness
temperature because the noise is temperature dependent. If the

Fig. 11. Weighting function of the AIRS channel near 2390 cm.

standard deviation is greater than three times the noise, then
the FOV is not cloud-free. This test can produce false positives
in regions of high and variable terrain. Test 4 is similar in
concept to tests 3 and 4 in Section III-E-1. However, because
of variable surface emissivity, a channel peaking near 950 mb
(2445.92 cm ) is used instead of a shortwave infrared window
channel. Test 4 uses the same predictor channels as Test 3 in
Section III-E-I. Test 5 is similar to Test 5 in Section III-E-I;
however, since the forecast skin temperature is rather poor over
land surfaces, a very large threshold is used (e.g., 10 K).

The detection of clear over land is not nearly as good as those
obtain for ocean cases. The overall cloud residual error is about
2.5%. If the coherence test was not included, the residual cloud
would be about 8%. The entire AMSU-A FOV needs to be clear
for the coherence test to pass. Fig. 12(a) and (b) shows the scatter
diagram of cloud amount and cloud top pressure for FOVs that
are thought to be clear using only land test 1 (AMSU-A pre-
diction of AIRS) and the improvement using the coherence test,
respectively. Use of a high spatial resolution imager, such as
MODIS would considerably improve clear detection over land.
The MODIS has infrared channels, similar to those of HIRS,
however with a spatial resolution of 1 km. We are planning, as
a future enhancement to the AIRS real-time processing system,
to use MODIS to improve cloud detection and cloud clearing.
Cloud clearing requires a clear estimate of selected AIRS chan-
nels [16]. The current algorithm uses AMSU-A to derive the
clear estimate. The high spatial resolution MODIS can be used
to find a clear MODIS FOV within the AIRS FOV containing
broken clouds. The AIRS clear estimate is then derived from the
clear MODIS infrared channels.

IV. SUMMARY

AIRS radiance and retrieval products will be available to
the NWP community in near-real-time. Principal component
regression provides a very computationally efficient retrieval
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(a)

(b)

Fig. 12. (a) Residual clouds using only AMSU-A test and (b) residual clouds
using both AMSU-A and spatial variability tests (b).

of atmospheric temperature, moisture, and ozone, as well as
surface parameters, such as skin temperature and emissivity.
The regression retrieval, also referred to as the initial retrieval,
is used as the first guess in the AIRS physical retrieval. Prin-
cipal component scores can also be used for data compression,
since we have demonstrated that 2000AIRS channels can
accurately be reconstructed from 60 scores. The noise-fil-
tering feature of reconstructed radiances is very promising
and we strongly encourage NWP centers to experiment with
assimilating reconstructed AIRS radiances. We plan to apply
reconstructed radiances to the AIRS physical retrieval. The
thinned radiance and principal component score files pro-
vide the options for NWP centers to use either observed or
reconstructed noise-filtered radiances. Cloud detection tests
are available to estimate clear AIRS FOVs, although these
constitute less than 5% of the FOVs. Because of this very low
yield, we also strongly encourage experiments directed toward
assimilating cloud-cleared radiances.
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