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Retrieval of Temperature and Moisture Profiles From
AMSU-A and AMSU-B Measurements

Philip W. Rosenkranz, Fellow, IEEE

Abstract—The NOAA-15 weather satellite carries the Advanced
Microwave Sounding Units-A and -B (AMSU-A, AMSU-B) which
measure thermal emission from an atmospheric oxygen band,
two water lines, and several window frequencies. An iterated
minimum-variance algorithm retrieves profiles of temperature
and humidity in the atmosphere from this data. Relative humidity
is converted into absolute humidity with use of the retrieved tem-
perature profile. Two important issues in the retrieval problem are
modeling of the surface and clouds. Ana priori surface emissivity
is computed on the basis of a preliminary classification, and the
surface brightness spectrum is subsequently adjusted simulta-
neously with the moisture profile retrieval. Cloud liquid water
is constrained by a condensation model that uses an extended
definition of relative humidity as a parameter.

I. INTRODUCTION

T HE NOAA-15 satellite, launched in 1998, carries the first
models of two new instruments, AMSU-A and AMSU-B.

These instruments were designed to be used together for
sounding of atmospheric temperature and moisture profiles.
They measure microwave thermal emission from the atmos-
phere in the oxygen band from 50–58 GHz, the two water lines
at 22 and 183 GHz, and several windows between the lines.
Channel frequencies and passband characteristics are given in
Table I. Other characteristics of these instruments are given in
[1]–[4].

Unfortunately, the AMSU-B on NOAA-15 suffered interfer-
ence from transmitters on the spacecraft from launch until Oc-
tober 1999, when the transmitters which caused most of the in-
terference were shut down. That problem was avoided in this
paper by use of data from a test on June 22, 1998, during which
the transmitters were off. Future AMSU-B units will have im-
proved shielding.

The retrieval algorithm described here is being developed for
use with similar instruments that will be flown on the Aqua
spacecraft of NASA’s Earth Observing System (EOS). It is in-
tended to provide the starting point for cloud-clearing of in-
frared measurements and a subsequent combined infrared-mi-
crowave retrieval. The algorithm draws on retrieval methods de-
scribed in [14]–[18]. A Bayesian approach is taken here with a
model for the observed system (atmosphere and surface) which
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TABLE I
AMSU-A/B CHANNEL CHARACTERISTICS

has sufficient degrees of freedom to reproduce the brightness
temperatures.A priori statistics are required for the parameters
that characterize the state of the system. However, statistical
correlations between temperature and relative humidity arenot
allowed to influence the retrieved profiles. Temperature is re-
trieved from the oxygen-band channels 4–14 and moisture and
surface parameters from the water-vapor and window channels.
Hence only radiative-transfer influences (e.g., water-vapor con-
tinuum absorption and surface emissivity in the oxygen band)
link different parameters in the retrieval.

Rieder and Kirchengast [19] have discussed some of the ad-
vantages and limitations of Bayesian algorithms and English
[20] has presented an error analysis of simulated retrievals using
AMSU-A and -B frequencies. Perhaps more crucial than the
method used to obtain a solution, however, is the modeling of
the observation process. The need to impose some degree of reg-
ularity on (for example) surface emissivity is a consequence of
ill-conditioning of the remote sensing problem. While on the
one hand it would be nonphysical to set surface emissivity equal
at all frequencies, on the other hand, the degrees of freedom in
the system would outnumber available measurements if emis-
sivities at different frequencies were totally independent.
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II. FORWARD MODEL

A. Radiative Transfer Calculations

Planck’s equation for radiant intensity is a nonlinear function
of temperature. For microwave frequencies, however, the phys-
ical temperatures encountered in the earth’s atmosphere lie at
the high-temperature asymptote of this function. Hence, bright-
ness temperature can be used as a surrogate for radiance in the
equation of radiative transfer with an accuracy of a few hun-
dredths of a Kelvin. The only exception to this statement occurs
with the cosmic background, which must be assigned an effec-
tive brightness temperature at frequencyof [5]

(1)

instead of its actual temperature K, in order to lin-
earize Planck’s function.

The equation of radiative transfer is written in the form

(2)

where is the brightness temperature emitted from the top
of the atmosphere, is the one-way transmittance of the at-
mosphere, is the component of brightness temperature
emitted from the atmosphere on a direct path to space,is the
surface temperature, is the surface brightness temperature,
and is the sky brightness temperature (including the at-
tenuated cosmic contribution) as it would be observed from the
surface. Atmospheric transmittance is computed with the rapid
algorithm described in [6], [7]. The form of (2) allows separa-
tion of the estimation of surface brightness from estimation of
temperature, as discussed in the next section.

Based on experience with NOAA-15 data, is computed
for a path length (or opacity) equal to 1.15 times the path length
for specular reflection (1.10 for channels 4–14). This empirical
adjustment accounts approximately for the effect of ocean sur-
face nonspecularity, and is roughly consistent in magnitude with
the calculations in [8]. For higher-emissivity land surfaces, the
adjustment has a negligible effect.

In addition to computing brightness temperatures from the
estimated atmospheric and surface parameters at each iteration
step, the forward model also must provide derivatives of the
brightness temperatures with respect to those parameters. The
derivatives corresponding to atmospheric temperature are given
by

(3)

where is equal to the temperature weighting function as de-
fined in [9] integrated over an atmospheric layer at temperature

having opacity , and is computed by
the rapid transmittance algorithm.is equal to the integral over
an atmospheric layer of the function defined in [9]. The
second term on the right side of (3) is a small correction to the
temperature weighting function. The derivatives corresponding
to are obtained by partial differentiation of (2):

(4)

The dependence on is nonlinear because is considered to
be an independent input, from the moisture/surface brightness
algorithm described below.

B. Surface Brightness Model

The model for the surface combines ana priori emissivity
of the surface type with an analytic function which allows the
retrieval to adapt the surface brightness temperature to the data.
The surface brightness temperature spectrumis modeled as

(5)

where is a preliminary estimate of surface emissivity, and
and are defined as

GHz (6)

GHz (7)

The second term in (5) is a smooth four-parameter function
of frequency [10] which allows for effects such as ocean surface
roughness, errors in the dielectric constant model, mis-classifi-
cation of the surface, or errors in the land fraction within a foot-
print. and are parameters defining the curve. The
retrieval algorithm fixes at 1.2 over land or mixed land/water,
or 3 over ocean, and treats and as uncorrelated free
parameters for which it solves. The derivatives of brightness
temperature with respect to the surface parameters are obtained
from (2) and (5), using the chain rule for differentiation.

For the data considered in this paper, the only surface types
are land and ocean. For land, . For ocean, is cal-
culated by a second-order polynomial function of temperature
with coefficients fitted to the emissivity of a flat surface viewed
in the polarization of the radiometers, which rotates with scan
angle. A separate set of these coefficients was precomputed for
each incidence angle and frequency. The model in [11] was used
for seawater dielectric constant at 23.8 and 31.4 GHz, and the
model in [12] was used at higher frequencies. For future use with
data from the Aqua spacecraft instruments, mixtures of land and
water within a footprint will be determined from a coastline map
and interpolated between the corresponding emissivities. Clas-
sifications for ice and snow are under development.

C. Atmospheric Moisture and Condensation Model

Brightness temperatures at the AMSU-B frequencies depend
on the vertical profile of atmospheric opacity relative to tem-
perature, but do not by themselves distinguish, at any given al-
titude, between opacity due to water vapor and opacity due to
liquid water. However, the physics of water vapor condensation
add somea priori information or constraints. Cloud coverage is
parameterized as in the stratiform condensation model of [13],
where a relative humidity threshold determines the onset of con-
densation. Although the water vapor profile is saturated within
the cloudy part of the field of view, it is assumed that the con-
densation process is not spatially resolved, hence the threshold
is less than 100% relative humidity. Currently, the threshold is
set to 85%.

In the condensation model, the vapor and cloud liquid water
density profiles are both linked to a single parameter, as il-
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Fig. 1. Water vapor(� ) and cloud liquid(� ) mixing ratios as functions of
H; � = saturation vapor mixing ratio.

lustrated in Fig. 1. When percent, is equal to relative
humidity; in the range 85 to 115, changes from a water-vapor
variable to liquid-water, and values of increase liquid
water while the vapor remains at saturation. Because conver-
gence, to be discussed later, is determined from the brightness
temperature residuals, which in turn are computed using the
vapor and liquid column densities, the role of in this algo-
rithm is only to introduce thea priori statistics and constraints.
The average vapor density in the field of view is related toby

if
if
if

(8)

and the liquid water density averaged over the field of view is
calculated as

if
if
if

(9)

In the previous equation, is the saturation
value of vapor density, and is a coefficient equivalent to a
mass mixing ratio of 0.5 g liquid/kg air. The saturation vapor
density is computed from the temperature profile. Saturation is
calculated with respect to liquid water (by extrapolation) even
when the temperature is below 273 K. Thus, this model will
allow supercooled liquid water clouds and water vapor greater
than the saturation value over ice (but not greater than).

The derivative of brightness temperature with respect to
will be used in the retrieval and is given by

(10)

in which , where represents the opacity of the
layer. The derivatives and are computed with
the rapid transmittance algorithm [7] using the estimated tem-
perature and moisture profiles. The latter derivative is calculated
in the small-droplet (Rayleigh) approximation; hence, it is valid
only in nonprecipitating cloud situations. Differentiation of (8)

and (9) yields and . The transitions at
and have continuous first derivatives.

III. SOLUTION METHOD

A. Outline

Retrievals are done at AMSU-A resolution, hence, the
AMSU-B measurements are weighted averages over 33
spatial arrays that approximate the AMSU-A footprint, nomi-
nally 50 km diameter near nadir. The input vector of measured
brightness temperatures is accompanied by an input validity
vector whose elements are either one or zero. This provides a
way of handling missing or bad data. Because the design of
the algorithm is motivated by future applications to Aqua data,
channel 16 is not used. That channel will not be included on the
Aqua instruments. The principal steps in the retrieval algorithm
are the following.

1) Based on location and month, choose ana priori temper-
ature profile . At present thea priori relative humidity
is global. Also calculate the geomagnetic field, which has
a minor effect on the transmittance of channel 14.

2) Using location or other criteria, classify the surface as
discussed in Section II-B. Compute ana priori surface
brightness temperature for this class. This will depend on
surface temperature, by (5).

3) Test for convergence of channels 1, 2, 3, 15, and 17–20
brightness temperatures. If not converged, update the
profile and the surface brightness temperature spectrum
using these channels.

4) Test for convergence of channels 4–14. If not converged,
update the temperature profile using these channels.

5) Return to step 2 if convergence did not occur in step 4;
else to step 3 if convergence did not occur in step 3; else
exit.

Steps 3 and 4 are described in greater detail in the following
sections.

B. Estimation of Surface Brightness and Atmospheric Moisture

The profile and the three surface brightness parameters
and are concatenated into a vector. The cost func-

tion to be minimized is [18]

(11)

In the previous equation, is the estimate of is thea priori
mean value of and is its covariance matrix with respect to

is a vector containing the measured brightness temper-
atures of channels 1–3, 15, and 17–20,is their error covari-
ance matrix, and is a brightness temperature vector computed
at each iteration from the current estimated values of tempera-
ture, moisture, and surface brightness, using the forward model.
Superscript indicates the transpose.

Given the previous estimate (which is on the first
iteration), the next estimate of is obtained by Newtonian it-
eration [21], except that Eyre’s [18] method of damping is used
to avoid large relative humidity increments because of the non-
linearity of the problem

(12)
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in which is the solution vector to

(13)
where is a possible correction (presently zero) to adjust for
transmittance-model errors, and is a Jacobian matrix (ma-
trix of derivatives of with respect to ), which is computed
for the state represented by (the forward model is assumed
to be linearizable within the retrieval error space, which is gen-
erally more compact than thea priori ensemble.) The damping
factor is as in (14), shown at the bottom of the page. Here,is
a scalar rather than a matrix as in [18].

The parts of and corresponding to relative humidity
were calculated from the TIGR profile ensemble [22]. For the
surface parts, it is necessary to postulate statistics based on phys-
ical considerations and previously observed ranges of variation.
Mean values are set to

land or mixed or water (15a)

(15b)

(15c)

and variances are set to

(16a)

Kelvin land or water (16b)

Kelvin land or water (16c)

For the moisture channels, the measurement error covariance
is the sum of contributions due to instrument noise (see Table I)
plus a diagonal error of (1.5 K), which approximately repre-
sents errors in resulting from errors in the temperature profile
retrieval.

After update of by (12), the water vapor and liquid water
profiles are computed from (8) and (9), and surface brightness is
computed for both window and sounding frequencies from (5),
using the new estimate. If the estimated vapor mixing ratio at
any level is less than 10 g/kg, it is set to that minimum value.

C. Estimation of the Temperature Profile

Although done separately in step 4 (see Section III-A), the
estimation of temperature uses essentially the same equations
as Section III-B, but with replacing everywhere and with
no damping . The atmospheric temperature vector is
augmented by , which is considered to be distinct from the
air temperature near the surface. A cost function of the form
(11), with replaced by is to be minimized separately for
the temperature profile. Given an existing estimate , the
next estimated profile is determined from a vector of ob-
served brightness temperatures for channels 4–14. However, the

updated surface temperature is not allowed to become less than
the estimated surface brightness temperature. In (12)–(13),

is replaced by , the Jacobian matrix of derivatives of
with respect to given by (3)–(4), evaluated at . The

error covariance matrix includes uncertainties due to surface
brightness, water vapor, liquid water, and the instrument noise.
The covariance of the atmospheric temperature vector was com-
puted from the TIGR ensemble [22]. To account for differences
between and the air temperature near the surface , the
variance of is set to a value 16 Klarger than the variance of

, but its mean and covariances with other levels are equal
to those of . Hence, the correlation coefficient of with
other levels is smaller than that of with those levels.

D. Convergence Tests

Convergence is tested separately for the temperature channels
in step 4 and for the moisture/surface channels in step 3. Itera-
tion of either step is suspended when one of the following con-
ditions is met: 1) the computed brightness temperature vector
meets the noise closure criterion

(17)

where is the instrument noise (not the total measurement
error) on channel and is the number of valid elements in

; 2) when successive computations of the left side of (17)
change by less than 1% for the temperature channels or 2% for
the moisture/surface channels; or 3) when the number of iter-
ations exceeds a preset limit, currently 12 for the temperature
channels and 16 for the moisture/surface channels. Typically,
iteration of the temperature profile ceases after one or two iter-
ations, but the moisture profile often requires six or more itera-
tions.

IV. RESULTSWITH NOAA-15 DATA

NOAA-15 data was corrected for contributions from antenna
sidelobes using coefficients given by Mo [3] and T. Hewison
(private communication, 1998). In Figs. 2 and 3, temperature
and dewpoint profiles retrieved from the satellite data are
compared with nearby radiosonde measurements. Thea priori
profiles used by the retrieval are also shown in the figures. In
both cases the satellite footprint was over land. As expected,
the retrieved profiles are fairly smooth curves, without the fine
vertical structure of the radiosonde profiles. With these profiles,
the highest water-vapor weighting function (channel 18) peaks
between 300 and 500 hPa. Consequently the dewpoint errors
are larger at higher altitudes. In Fig. 2, the near coincidence
of the radiosonde’s temperature and dewpoint near the surface
indicates possible fog and cloud. The retrieval algorithm places

if K for all channels or if the iteration number is
otherwise

(14)
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Fig. 2. Retrieval versus radiosonde profiles at International Falls, MN. The circle is retrieved surface temperature.

Fig. 3. Retrieval versus radiosonde profiles at Corpus Christi, TX. The circle is retrieved surface temperature.

cloud liquid water between 750 hPa and the surface (using
the 85% relative humidity threshold). The radiosonde data
in Fig. 3 also indicate fog or cloud between 925 hPa and
the surface, but in this case, liquid water was not retrieved
because the retrieved temperature within this pressure range
is K too high. Surface observations at the time of the
satellite overpass were overcast clouds at 1500 ft (930 hPA)
for International Falls, MN, and a few clouds at 1700 ft (965
hPa) for Corpus Christi, TX.

Fig. 4 displays retrieved parameters along a satellite track
over the eastern Pacific Ocean. In the top row, integrated liquid
water is displayed in the leftmost swath, integrated water vapor
and mixing ratio at four different levels in the second through
sixth swaths. As one moves upward in the atmosphere, the

moisture associated with the intertropical convergence zone
becomes more sharply peaked, indicating the presence of a
small number of areas with relatively strong convection. The
climatological variation of temperature at different levels is
reflected in the temperature retrievals in swaths 7–16. An
interesting feature is the wave activity visible at the 5 to 20
hPa levels, at the edge of the South Polar vortex. High-latitude
temperature waves have also been observed by Wu and Waters
[23], [24] and by Eckermann and Preusse [25], who attributed
those waves to amplification of weak background gravity-wave
activity due to the temperature structure of the winter polar
stratosphere.

The three swaths on the top right side of Fig. 4 display the sur-
face brightness parameters , and . The last exhibits el-
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Fig. 4. (Top) Retrieved atmospheric and surface parameters on June 22, 1998: integrated liquid water (0–0.5 kg/m); integrated water vapor (0–70 kg/m); vapor
mixing ratio at four levels (0–30, 0–20, 0–8, 0–3 g/kg). The temperature scales have a range of 45 K from black to white:R (0–7),T (�20 K), T (�20 K).
(Bottom) brightness temperature residuals (K) (note the different scale for channels 4–14).

evated values over two regions, one near the top and another
of the way from the bottom of the swath. This could be caused
by sea state or possibly by cloud liquid water missed by the
condensation model. With the single-polarization AMSU-A/B
radiometers, these two effects are difficult to disentangle.

The bottom row of Fig. 4 contains the residuals (measured
minus computed brightness temperature) for the 19 channels
used in the retrieval algorithm. The largest residuals (for ex-
ample, near the bottom of the swath in channels 1, 2, 17, and 20)
are associated with high values of liquid water, which suggests
that precipitation is present there. These large residuals occur
because the radiative transfer calculation does not include scat-
tering due to the larger drop sizes (liquid or ice) encountered in
raining clouds. Retrievals with such large residuals would nor-
mally not be used. Elsewhere in Fig. 4, brightness-temperature
residuals in the range of K to K are seen in areas where

also has large values. The fact that residuals are large com-
pared to instrument noise indicates that the forward model does
not provide adequate degrees of freedom there, possibly because
the assumeda priori statistics are not representative, or possibly
due to inhomogenieties such as unresolved clouds within the in-
strument footprint.

If the correction described in Section II-A for surface non-
specularity were omitted, then the residuals in channel 3 would
be considerably larger over ocean, typically 3–4 K. The reason
that this effect becomes noticeable at 50 GHz is that in the
absence of the 15% correction to opacity on the specular re-
flected path, the retrieval algorithm can compensate at most of
the window and water-vapor frequencies by an increase of%
in retrieved water vapor. However, channel 3 is unique among
the window channels in that opacity due to oxygen is greater
than the opacity due to the water-vapor continuum.

Future development of this retrieval algorithm will be di-
rected toward improvements in the surface model, treatment of
a larger variety of surfaces (e.g., [26]), and the incorporation of
precipitation flags and/or corrections [27].
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