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Abstract—In practical decision analyses, the “curse of dimen-
sionality” compels one to make simplifying assumptions that can
introduce errors into estimates of various indexes that interest
decision-makers. These indexes include the expected performance
of optimal and suboptimal strategies, the benefit of explicitly
considering uncertainty, and the benefit of additional information.
This paper quantifies the effects on these indexes of simplifying as-
sumptions, including discretization of the decision space, omission
of some decision variables and uncertainties from the decision tree,
and disregarding of risk aversion. To reduce errors arising from
discretization of the decision space, we use a multidimensional
cubic spline to interpolate the performance of alternatives between
a few simulated points. A case study analyzes decisions concerning
phosphorus loading, fisheries management, and lower trophic re-
search projects in Lake Erie under multiple criteria and ecological
uncertainties. Results show that spline-based solutions often yield
potentially superior decisions from those based on discretized
decision spaces, but that omitting important uncertainties makes
more of a difference in this case study’s decisions and indexes
than simplifying the decision space. On the other hand, incorrect
multicriteria weights affect the case study’s outcomes more than
incorrect probabilities.

Index Terms—Bayesian decision analysis, decision trees,
Lake Erie ecosystem, multidimensional cubic spline, subjective
judgments.

I. INTRODUCTION

UNCERTAINTY and multiple objectives make decisions
difficult in business, government, and personal decisions.

Decision analysis can help people make better decisions by
helping them to structure the problem, quantify various risks,
and compare alternatives based on outcomes and expressed
preferences [1]–[3]. A useful device in structuring problems is
the decision tree, a graphical device that portrays the sequence
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of choices and random or uncertain events as decision and
chance nodes, respectively. The tree is used to show the perfor-
mance of the decision alternatives under alternative scenarios
and to facilitate the calculation of optimal strategies. Bayesian
analysis, which is a fundamental concept in decision analysis, is
a probabilistic approach to uncertainty analysis and can be used
to integrate information from experts, models, and observation
to quantify the likelihood of alternative “states of nature.” In
Bayesian analysis, alternatives are chosen to maximize proba-
bility weighted “utility” (a measure of desirability), and Bayes’
law is used to update probabilities when new information is
obtained.

Some indexes of interest that decision analysis yields include
the following: 1) the expected performance of optimal and
suboptimal strategies on various objectives under uncertainty;
2) the performance penalty that results from disregarding uncer-
tainty, i.e., the “expected cost of ignoring uncertainty” (ECIU);
and 3) the expected improvement in performance associated
with decreased uncertainty through information acquisition or
new research, the “expected value of perfect or imperfect
information” (EVPI and EVII, respectively). However, the rec-
ommendations and indexes yielded by decision analysis can be
distorted by simplifying the following assumptions:

1) reductions in the set of alternatives considered, such as
using a small discrete set of alternatives rather than a
continuous range, or reducing the number of decision
variables considered;

2) limiting the uncertainties considered to only the most
important uncertain parameters;

3) assuming risk neutrality instead of risk aversion or seek-
ing in utility functions.

Such simplifications are often necessary because decision tree-
based decision analyses are afflicted by the curse of dimension-
ality, i.e., the number of combinations of decision options and
realizations of uncertain parameters grows exponentially with
the number of options and variables. For example, if we have
four decision variables, each with ten levels, and if we consider
ten uncertain parameters, each with three levels, a decision tree
to be analyzed will have 104 · 310 = 590 490 000 endpoints. If
the value of the objective function has to be estimated for each
branch of the tree using a computationally intensive simulation
model, the computational time can become prohibitive. There-
fore, simplifications such as the above must be made.
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Fig. 1. Example of true function, discrete approximation, and spline approximation. (a) True problem. (b) Discrete approximation. (c) Spline approximation.
(d) Optimal of true function, discrete, and spline approximation.

Fig. 2. Decision tree with research options.

But, such simplifications come at a cost [4]. For instance,
the true optimum may not lie in the discrete set of alternatives
considered, so that a suboptimal choice is recommended. The
resulting loss of utility may be significant. Another cost is that
errors may be introduced into decision analysis outputs.

To illustrate this point, Fig. 1 shows a simple example of a
decision analysis problem. Fig. 1(a) represents an example of
a true problem which results in outcomes f(a) given the pos-
sible decision a that can be chosen from the continuous range
[0, 10]. Because f(a) may be difficult to assess (e.g., because
a complex simulation model has to be run for each value of a
considered), a discretization such as in Fig. 1(b) is often used. A
difficulty is that the true optimum may be missed [see Fig. 1(d)].
If we could estimate the response surface, for example, by
fitting a spline function through a few discrete points, we can
interpolate and estimate the value of f(a) for all other values
of a between the discrete points. For instance, see spline f ∗(a)
in Fig. 1(c) and (d). We then can optimize f ∗(a) over the full
range of a, and the resulting decision may be better than if we
only choose from the discrete set.

The plan of this paper is as follows. In the method section,
we summarize a procedure by the following: 1) approximating
the f(a) for a vector of continuous decision variables given
discrete data points; 2) combining the approximated response
surface with discrete realizations of uncertain parameters; and
3) solving the resulting continuous optimization problem in
order to calculate optimal management and research strategies,

ECIU, EVPI, and EVII. The application section summarizes
an evaluation of nutrient, fisheries, and research management
in Lake Erie that uses the proposed procedure, and assesses
the relative importance of different simplifying assumptions in
decision analysis.

II. METHOD

A. Formalization of the Decision Problem

Fig. 2 is a schematic of a decision tree in evaluating in-
formation gathering options using the Lake Erie management
problem as an example. The tree flows from left to right through
time and includes many of the features considered in most
decision tree-based decision analyses.

For the case in Fig. 2, two decision stages (square nodes)
are shown representing the following: 1) what research projects
eh ∈ E can be undertaken and then 2) what fisheries and
nutrient management actions as ∈ A can be implemented. At
the first stage, we decide whether a research project should
be undertaken and, if so, which project. If several mutually
exclusive research projects are possible, the chosen project(s)
should represent the best balance of research cost and the value
of reduced uncertainty. Then, at the second decision stage, we
identify an optimal management alternative as based in part on
the knowledge obtained from the research project. Although
in reality A is a continuous set with infinity of alternatives,
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decision analyses generally proceed by discretizing this set.
Our main goal in this paper is to use spline methods to allow
us to consider a continuum of management alternatives. For
simplicity, however, we assume that the research decision set
E consists of discrete alternatives.

Chance nodes (circles) represent random events, with a
branch for each possible realization (an element of either
Z or Θ). The realization Z from a research project affects
the expected performance of a chosen alternative because the
research project’s outcomes affect (through Bayes’ Law) the
posterior probabilities of the states of nature. Meanwhile,
the second chance nodes Θ affect the actual performance
X(as,Θ) which does not depend on the outcome of a research
project. Mathematical models that are used to estimate the
performance X(as,Θ) of each management alternative under
each realization are often highly uncertain, and the model we
used [the Lake Erie Ecological Model (LEEM)] is no excep-
tion. Uncertainties can include structural uncertainty, variability
(e.g., spatial or temporal variability), and parameter uncertainty
(e.g., due to measurement error or small sample size) [5].
This paper quantifies the implications of uncertainties due
to parameter uncertainty and natural variability. Probabilities
are attached to each branch, which are based upon subjective
probability assessments by fishery managers and modelers.

Here, we have two types of chance nodes: one for model
parameters Θ and the other for outcomes of research Z. The
uncertainties are represented here as alternative parameter val-
ues; therefore, the uncertainty Θ is a set of parameters that
are assumed to be independent of each other, Θ = {θn, n =
1, 2, . . . , N}. We discretize the distributions of each θn, de-
noting possible realizations by θn1, θn2, . . . , θnm, . . . , θnM(n),
where M(n) is the number of possible values of θn. The
multidimensional spline method we use to interpolate between
discrete values of a could also be used to interpolate between
discrete realizations of θn; this will be the subject of future
research. The set Θ is divided into two subsets: ΘLTL and
ΘOTH. The first subset ΘLTL represents those uncertainties
that can be reduced through additional research. In our applica-
tion, these are uncertainties concerning the lower trophic level
parameters of LEEM; these parameters are highly uncertain
because of the recent invasion of zebra mussels in Lake Erie.
(Lower trophic parameters are those that represent energy and
nutrient flow in phytoplankton, zooplankton, and zoobenthos
populations.) Alternative values of those parameters represent
different hypotheses about the mussels’ effect on energy and
nutrient flow in the lake. Information from the research projects
allows us to update the distributions of this subset of parameters
according to Bayes’ Law. Let the outcome of a research project
eh be designated Zh, with possible realizations {Zhk, k =
1, 2, . . . ,K(h)}. Bayes’ Law uses outcomes to update prior
probabilities P (θnm) of the parameters, yielding posterior
probabilities P (θnm|Zhk)

P (θnm|Zhk)=P (Zhk|θnm)P (θnm)
/∑

m

P (Zhk|θnm)P (θnm)

=P (Zhk|θnm)P (θnm)/P (Zhk) (1)

where P (Zhk|θnm) is the likelihood of outcome k from project
h, given that θnm is the true state of parameter θn, and P (Zhk)
is the unconditional probability of outcome Zhk.

The second subset of uncertainties ΘOTH includes uncertain-
ties whose probabilities are not affected by additional research,
but can still significantly impact the performance of alternatives
due to nonlinearities in system responses and in people’s risk
attitudes. In our case study, this subset includes uncertainty in
upper trophic level (fishery) parameters in LEEM. Multivariate
samples of this vector are taken from assumed distributions
using Latin Hypercube Sampling (LHS) as a variance reduction
technique [6].

Because most decision problems involve several conflicting
objectives that are accorded with different priorities by
different interests, “utility” is necessarily a multidimensional
notion. The outcome for a given management alternative a
under a given realization of the uncertainties consists of a
vector X(a,Θ) that includes variables (“attributes”) xi(as,Θ)
describing the performance on each of the multiple objectives
(e.g., fish harvests and water quality). There are many methods
in translating multiple criteria into a single index of desirability
[7]. Here, we choose to apply a multiattribute utility theory [1],
[8]. Following traditional practice, we construct multiattribute
utility functions as follows. A single attribute utility function
ui is assessed separately for each attribute xi. Second, the ui

are weighted and aggregated, resulting in a scalar index of
desirability. A simple aggregation is the additive utility function

U (X(as,Θ)) =
∑

i

wiui (xi(as,Θ)) (2)

where wi represents the weight for criterion i(
∑

i wi = 1) and
U(X(as,Θ)) is the overall utility of alternative as, given state
of nature Θ. The major assumption underlying the additive
form is additive independence, which applies if preferences
between two distinct alternatives depend only on the marginal
probability distributions of the xi within an alternative and not
on their joint distribution [2].

In our case study, the participants (six U.S. and Canadian
fishery managers) use the tradeoff method to select the weights,
which derives weights from the observed choices among alter-
natives by users [9].

We next describe how several products of decision analy-
sis are obtained, including identification of optimal decisions
and quantification of ECIU, EVII, and EVPI. Finally, some
approaches in quantifying the robustness of the analysis are
discussed.

B. Optimal Decisions and Other Outputs

Decision analysis can yield several outputs of interest, in-
cluding optimal strategies (research projects, management al-
ternatives), ECIU, EVPI, and EVII [6]. Detailed procedures in
calculating these outputs are presented in [6], and an illustrative
application to Lake Erie management is described in [10]

Disregarding the possibility of research, the optimal de-
cision is the one that maximizes expected total utility
EΘ[U(X(as,Θ))] =

∑
Θ P (Θ)U(X(as,Θ)). The numerical

difference in the expected utility between two alternatives (for
example, a1 and a2) is not directly interpretable, since utility
functions are, strictly speaking, only ordinal scales. Fortunately,
a difference in the expected utility can be converted to an
equivalent difference in one of the criteria xi [10]. Here, we
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use annual walleye sport harvest (x2) to gauge the difference
between alternatives because it is the most important attribute
for most of the six fishery managers participating in this study.

The ECIU compares the expected performance of two strate-
gies: 1) a naive strategy anaı̈ve developed assuming that a
nominal value for Θ (e.g., its expected value) occurs with
probability 1 and 2) an optimal strategy aopt developed con-
sidering the full range of possibilities and their probabilities.
The ECIU is defined as the improvement in the expected utility
if aopt is chosen instead of anaı̈ve. This is the expected loss of
performance when a decision is made as if there were no risk.
Although ECIU can include effects of other uncertainties, we
include only the uncertainties that can be reduced by research
ΘLTL so that ECIU can be compared with EVII and EVPI.

The EVII is calculated by considering whether research out-
comes could affect decisions [10]. The calculation recognizes
that the information obtained is imperfect. For the “no research”
alternative e0, the optimal management decision and the utility
for the optimal decision are aopt and EΘ[U(X(aopt,Θ))],
respectively. The value of a research project (EVII) is assessed
by comparing the expected performance of management de-
veloped using the posterior probabilities P (θnm|Zhk) to the
expected performance of the optimal strategy based on just the
priors P (θn). Of course, the research also involves cost, and an
improved performance must be weighed against this cost.

The EVPI is obtained by assuming that new information
Z permits the user to estimate Θ without error. As a result,
the development in EVII can be simplified as follows. First,
define aopt|Θ as the optimal strategy given parameter values
Θ. Then, the expected utility over all possible realizations if
decisions could be made with perfect information would be
EΘ[U(X(aopt|Θ,Θ))]. Comparing this to the expected utility
if no information is available EΘ[U(X(aopt,Θ))]) allows us
to gauge the value of perfect information. EVPI is an upper
bound to EVII. This upper bound is useful because if EVPI
falls short of the cost of a research project, the project cannot be
justified by the value of the information it provides. Thus, we
can use EVPI to screen research projects—if their cost exceeds
their maximum possible benefit, then we do not consider them
further.

As mentioned above, those quantifications of the expected
penalty depend on the assumptions concerning the sets of alter-
natives and uncertainties considered. In the next few sections,
we describe how we assess the effect of these assumptions on
the results of a decision analysis.

C. Approximation of Response Surfaces

In this section, we explain how to construct a spline-based
approximated response surface for a multidimensional contin-
uous set of alternatives from a discrete set. Further, because
the decision analysis is considering multiple attributes X and
multiple uncertainties Θ, we propose a method to aggregate the
surface over these attributes and uncertainties. The three-step
procedure is as follows.

1) For each attribute xi, construct the response surface
µi(xi(a,Θ)) that approximates the single attribute utility
function values ui(xi(a,Θ)) as a function of a, given a
realization of the uncertainties Θ.

2) Aggregate the surfaces over the attribute space by ap-
plying weights wi in (2) to the approximations of
ui(xi(a,Θ)), yielding an approximation of U(X(a,Θ))
as a function of a, given a realization of Θ.

3) Use the probabilities of the realizations of Θ to aggregate
the surfaces over uncertainties space Θ, yielding an
approximation of EΘ[U(X(a,Θ))] as a function of a.
This function can then be optimized to identify the best
value of a.

An alternative approach would have been to approximate the
overall utility U(X(a,Θ)) with one spline rather than each of
its constituent ui(xi(a,Θ)) with separate splines. However, we
undertake extensive sensitivity analyses on the weights wi in
(2). As a result, each weight set would result in a different
function U(X(a,Θ)), and thus, a different spline would have
to be obtained for each sensitivity case. Approximating each
ui(xi(a,Θ)) just once and then applying multiple weight sets
to those splines minimize computational effort.

In the next section, we explain this procedure in more detail.
First, we explain it for the 1-D decision variable case associated
with multiple attributes and uncertainties. Later, we expand it to
the multidimensional case.

Step 1) One-Dimensional Response Surface µi Under Mul-
tiple Attributes and Uncertainties: There are several
ways to approximate a function of one or more
variables. In this paper, we adopt the interpolation
method because there are no random errors associ-
ated with our simulation model (LEEM). To inter-
polate a function between data points, two general
methods are used. One is the polynomial approach.
However, if there are many data points, such func-
tions may oscillate in an unreasonable manner. An
alternative approach is the spline method, which ap-
plies lower order polynomials to subsets of adjacent
data points [11].

In order to ensure that the nth derivatives are
continuous at the discrete points in the spline, the
order of the polynomial should be at least n + 1.
Therefore, cubic or higher order splines can ensure
continuous first and second derivatives that yield
visually continuous smooth functions. In contrast,
first-order splines are not smooth because the slope
changes abruptly at the data points. To satisfy this
condition with minimal oscillatory behavior, we use
the multidimensional cubic spline method [12].

A 1-D spline satisfies the following conditions:
a) continuity at data points (which define the bound-

aries between the segments of the spline);
b) slope continuity (i.e., first derivatives) at the inte-

rior points;
c) curvature continuity (i.e., second derivatives) at

the interior points.
Further, we assume a zero rate of change for the
slope of the cubic spline at exterior data points.

In actual implementation, a is a vector rather
than a scalar; therefore, a multidimensional spline
is required. We defer the definition of the multidi-
mensional spline procedure until Section II-E.
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Step 2) Aggregation Over Criteria and Uncertainties: Con-
sider a vector of splines µ(a,Θ) = (µ1(a,Θ), . . . ,
µI(a,Θ)), where µi(a,Θ) represents the spline of
attribute i, given the realization of Θ.

To aggregate the criteria [Step 2) of the proce-
dure], permitting overall comparison of the alterna-
tives a, we use the additive utility function (2) as
follows:

M(a,Θ) =
∑

i

wiµi(a,Θ) (3)

where M(a,Θ) is the overall spline utility function
of alternative as, given the realization of Θ.

Through the above two steps, we create a
multidimensional spline that estimates the total
utility as a function of a, given a realization of Θ.
To choose the option that maximizes the expected
utility EΘ[M(a,Θ)] =

∑
Θ P (Θ)M(a,Θ), we first

need to aggregate each spline over possible values
of Θ using the assumed probabilities [Step 3) of the
procedure].

D. Finding the Optimal Solution a∗

The problem of choosing optimal solution a∗ at a decision
node is a nonlinear optimization problem over the possible
values of a. The problem is stated as follows:

Max EΘ [M(a,Θ)]
Subject to L ≤ a ≤ U (4)

where L and U are lower and upper bounds, respectively.
We use a variant on Newton’s method to find the optimal

solution [13]. Because EΘ[M(a,Θ)] consists of piecewise
spline regions, we need to search all spline regions to find the
optimal solution. For example, if there are n decision variables,
each with m different levels, (m− 1)n regions are searched,
and their solutions are compared to find the best solution. Since,
in general, the objective of (4) can be nonconcave, no algorithm
can guarantee a global optimum. Therefore, we repeatedly
execute the algorithm with different initial points. In our ap-
plication, the method always converged to the same solution.

E. Multidimensional Cubic Spline

To extend the 1-D spline approach to the multidimensional
case, we approximate the utilities ui(a,Θ), where a is now a
vector of decision variables. The multidimensional interpola-
tion scheme is based on the study in [12]. For simplicity, we
illustrate it with a 2-D case.

Suppose that we have two decision variables, a1 and a2

where o = a11 < a12 < · · · < a1χ = p and q = a21 < a22 <
· · · < a2η = r. Each subrectangle µidf of the entire domain is
defined as

µidf = {ui(a1, a2,Θ): a1d−1≤a1≤a1d, a2f−1≤a2≤a2f ,

where d = 0, . . . , D and f = 0, . . . , F}

for each attribute i, given a realization of parameter values Θ.
A bicubic spline is fit to these points

µidf (ui(a1, a2,Θ)) =
3∑

p1=0

3∑
p2=0

Cp1p2
idf ap1

1 ap2
2 . (5)

As we want the function µidf to be valid over the subrectan-
gle df , we need to obtain sixteen coefficients Cp1p2

idf (p1 =
0, . . . , 3; p2 = 0, . . . , 3). In contrast to the 1-D spline, more
conditions are needed to solve for these coefficients. These
conditions include the following:

1) continuity at each interior discrete point (i.e., any point in
two dimensions that is surrounded by four subrectangles);

2) slope continuity at any interior point with respect to both
a1 and a2 directions and any exterior point adjacent to
two rectangles with respect to either a1 or a2 direction;

3) curvature (second derivative) continuity at interior points
in both the a1 and a2 directions.

Furthermore, we assume that the second derivative of the cubic
spline is zero at the region’s border (d = 0, D; f = 0, F ), in
directions normal to the border.

The mathematical development of n-dimensional cubic
splines is available in the literature [14]. Algorithms used to
find coefficients cp1p2

idf for the 2-D case can be found in [12].
The cases of three or more dimensions are analogous to this
2-D method. For example, as we will present a case study later
that considers four decision variables, we create a 4-D cubic
spline in interpolating utility outcomes as a function of those
variables

µidfhkui(a1, a2, a3, a4,Θ)

=
3∑

p1=0

3∑
p2=0

3∑
p3=0

3∑
p4=0

Cp1p2p3p4
idfhk ap1

1 ap2
2 ap3

3 ap4
4 (6)

where d, f , h, and k are the indexes for the 4-D subrectangle.
Equations (5) and (6) are specified for each attribute i, given

a fixed realization of the uncertain parameters Θ. Therefore,
similar to Section II-C, we need to aggregate each µidfhk over
the attributes [Step 2)] and realizations [Step 3)]

EΘ [M(a,Θ)]=
∑
Θ

P (Θ)
∑

i

wiµidfhk(a,Θ)

=
∑
Θ

P (Θ)
∑

i

wi

×
3∑

p1=0

3∑
p2=0

3∑
p3=0

3∑
p4=0

Cp1p2p3p4
idfhk ap1

1 ap2
2 ap3

3 ap4
4 .

(7)

III. ILLUSTRATIVE APPLICATION

A. Background

Lake Erie is chosen as a case study because of large uncer-
tainties resulting from the various human and other stresses it
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has been subjected to and the many tradeoffs involved in its
management.

One attempt to restore the ecological integrity of the
lake was the 1972 Great Lakes Water Quality Agreement
(GLWQA) between the U.S. and Canada. This agreement
emphasized the restoration of water quality by reducing
nutrient inputs. As a result of the GLWQA, point and nonpoint
phosphorus loadings were reduced to the agreement’s target of
11 000 tons/year. In addition, fisheries restoration efforts were
undertaken. Interagency cooperation between the U.S. and
Canada has implemented quota management for fisheries.

Through quota management and phosphorus reduction, the
walleye population has recovered significantly from its severely
depressed status in the 1960s [15]. Yet, the highly successful
recovery of fisheries in the 1980s did not continue in the 1990s.
The invasion in the late 1980s of zebra mussels, which fed
extensively on phytoplankton, may have contributed to this
stagnant production, but the true impact of zebra mussels on the
productivity of the system is still subject to extensive debate.
To date, researchers have proposed many hypotheses as to how
zebra mussels might affect energy and nutrient flows in the
lower trophic level. Such scientific debate and the considerable
uncertainty regarding the system’s response to management
hamper managers’ efforts to make effective decisions [16].

These hypotheses are summarized in [10]. One hypothesis
is that the decline of phytoplankton may decrease the energy
flow in higher trophic levels through changes in the availability
of algae and other food. In a contrasting hypothesis, zebra
mussels are believed to increase internal phosphorus recycling,
which could enhance primary productivity and, thus, food
availability for higher trophic levels. Such changes can have
important implications for ecosystem decisions such as
fisheries management.

Alternative hypotheses such as the aforementioned hypothe-
ses are represented as alternative parameterizations of LEEM
[17]. LEEM was designed to aid the understanding of ongoing
changes and interactions between zebra mussels, fisheries pro-
ductivity, phosphorus loading, and fisheries management in the
Lake Erie system. By using an annual time step, LEEM models
the age structure of 15 species and dynamically describes
prey–predator relationships and the lower trophic level. The
model allows users to explore alternative decisions concerning
phosphorus loading and fisheries management while consider-
ing the implications of assumptions about the parameters and
structure of the system. LEEM was parameterized by a com-
bination of expert judgment, empirical analysis of particular
functional relationships, and calibration to historic values of
output variables. We will use LEEM to estimate how decisions
a affect the managers’ criteria X . (Background on LEEM’s
formulation and parameterization is in [17].)

Ten fishery biologists from the U.S. and Canadian resource
management agencies participated in two workshops held in
Cleveland, OH, in early 2000, to assist us in the decision
analysis of Lake Erie research, fisheries, and nutrient alterna-
tives. The purpose of the workshops was to ask the participants
to identify fishery management objectives, alternatives, and
uncertainties to define research projects that could address
lower trophic level uncertainties ΘLTL and to quantify utility
functions and probabilities needed by the decision analysis. In

this paper, we report results only for the six managers who
attended the entirety of both workshops. These six managers
represented agencies from both Canada and several states in the
U.S. Details concerning the procedures used in the workshop
and the basic calculation methods used in the decision analysis
are available elsewhere [10].

B. Alternatives a

The decision alternatives a that we considered in this paper
involve two general policy levers: phosphorus loading levels
and fisheries effort levels. Compared to our previous analysis
[10], which did not consider nutrient policies, this allows us
to analyze the important interactions of nutrient and fishery
management. For simplicity, three levels of phosphorus loading
level are considered in constructing the splines: the present
GLWQA target of 11 000 tons/year and ±50% deviations from
that level. Although a decreased phosphorus loading level will
improve water quality (which is desirable), it may also decrease
fisheries productivity (which may not be) [9]. In terms of
fisheries management, we consider the management of com-
mercial trawling (which targets smelt, Osmerus mordax), com-
mercial gill netting (for yellow perch, Perca flavescens), and
sport harvest (predominantly of walleye, Stizostedion vitreum).
Management by regulation and quota is modeled as a set of
targets for fishing mortality levels, one target for each of the
three species. For simplicity, three levels of each targets are
considered: medium (M), high (H), and low (L), representing
current average mortality, and 50% increase and decrease in
mortality, respectively.

C. Ecological Model X (as,Θ), Uncertainties Θ

Various views among ecologists concerning the impact of
zebra mussels upon phosphorus and energy cycling constitute
the scientific uncertainty ΘLTL; our decision analysis assesses
the implications of that controversy for fishery harvest and
phosphorus management. In order to limit the complexity of
the probability assessments, we include just five of the lower
trophic level LEEM parameters in ΘLTL: zebra mussel re-
cycling (ZMr), zebra mussel production (Zkp), zooplankton
production efficiency (AZP), zoobenthos production efficiency
(AZB), and primary productivity (g0). These parameters were
chosen because they represent key responses of lower trophic
variables to phosphorus and energy inputs. Given the qualitative
characteristics of the hypotheses, we first described whether the
hypotheses imply High (H), Medium (M), or Low (L) values of
those parameters and, then, selected corresponding numerical
values with a large enough range to be informative without
causing unrealistic model behavior. Since g0 had originally
been estimated using regression from productivity-nutrient data
for a cross section of lakes, the standard error estimated from
that regression also informed the chosen range of values for
that parameter. There are 3, 2, 3, 2, and 3 hypothesized levels
for each parameter, respectively, implying 108 combinations.

The task assigned to each of the fisheries biologists in the
workshops was to review and, where appropriate, rephrase
the hypotheses and, then, assign a prior probability P (θnm)
for each level m of each parameter θn that reflects their
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understanding of the hypotheses and their judgments about
the hypotheses’ relative likelihood. No covariances among the
parameters were elicited among the parameters in order to
limit the complexity of the assessment, and because there is
little basis in quantifying correlations. As explained below,
the biologists also chose likelihood probabilities for research
outcomes, which we use together with the prior probabilities
and Bayes’ Law to estimate the value of that research. Values
for both prior and likelihood values are given in [10].

The second set of uncertainties ΘOTH includes nonlower
trophic level LEEM parameters for which there is significant
uncertainty and which affect the outcomes X . (This set of
uncertainties was not considered in our earlier fisheries decision
analysis [10].) The research projects are assumed to yield no in-
formation on them. LEEM includes more than 1900 parameters
that have been estimated by a combination of expert judgment,
laboratory data, and calibration to observation [17]; therefore,
we need to determine which uncertain parameters most affect
the model output. In our study, we first divided uncertain model
parameters into four functional groups representing distinct
processes: recruitment, consumption, growth, and survivability.
From each category, we chose the parameters ΘOTH that have
the most impact on the model’s results. Impact was gauged
by an index equaling the product of a parameter’s sensitiv-
ity (the estimated derivative of an important output—walleye
population—with respect to the parameter) and its uncertainty
(standard deviation, subjectively assessed by the model cre-
ators). As a result, we focused on 60 uncertain parameters (i.e.,
one parameter from each functional group for each of 15 fish
species) that have the most impact on LEEM’s results.

Two ecological experts that are familiar with Lake Erie
fishery dynamics then chose means and standard deviations of a
subjective probability distribution for each of those parameters.
For instance, they specified the means and standard deviations
for the following walleye parameters: egg survivability (Egg
Surv), variability of length (VarPref) and swimming speed
(SWS), and slope in the bioenergic model (Rhom) for the
recruitment, consumption, survival, and growth categories,
respectively. The values were selected based on variation in
published and unpublished estimates, and also by considering
what values would result in population characteristics that are
broadly consistent with historical experience in Lake Erie.
Log normal, normal, or right-truncated normal distributions
were assumed for each, as judged appropriate by the experts.
For all other species, a similar parameter distribution shape as
walleye was assumed [i.e., the same coefficient of variation
(ratio of mean to standard deviation) and distribution type]. As
in the case of the first set of uncertainties, no covariances were
assessed.

Because of the curse of dimensionality, we need to limit
the number of realizations of ΘOTH we considered. In our
application, this number is five. Those samples are drawn from
the assumed distributions of the 60 variables using LHS [6].
Of course, more samples would be desirable to reduce the
sampling error, but with 108 realizations of ΘLTL and 34

discrete values of the decision variables as, five samples of
ΘOTH yield a total of 43 740 LEEM simulations, which takes
approximately 240 h of clock time on an advanced PC. The
results of these simulations are the outcomes [i.e., X(as,Θ)]

for each as and Θ that are then input to the spline analysis
explained in Section II.

D. Research Projects and Outcome Likelihoods: E and
P (Zhk|θnm)

The first decision node in Fig. 2 represents possible research
projects E = {e0, e1, . . . , eH}. If a project is undertaken,
the prior probabilities P (θnm) are updated by Bayes’ rule
(1), yielding posterior probabilities P (θnm|Zhk). Likelihoods
P (Zhk|θnm) are required by Bayes’ Law to describe how the
information provided by the potential research projects influ-
ences the posterior distribution of LEEM parameters. Because
of time limitations, we elicited values of P (Zhk|θnm) from
the workshop participants for four of the projects, representing
a cross section of the original 16 [10]. The participants also
estimated the likelihoods for these research projects and their
cost and time.

E. Selection of Objectives, Weights, and Utility Function: X ,
wi, and ui

Because the results of a decision analysis—the optimal de-
cision, ECIU, EVPI, and EVII—are sensitive to the people’s
value judgments, a careful procedure in defining objectives and
attributes and in eliciting their single attribute utility functions
and weights is required.

The participating fisheries managers were asked to define
general objectives along with specific numerical attributes in
evaluating fishery management options. Their overall objective
was to maximize ecosystem health and human well-being,
which was subdivided into three categories: social, ecological,
and economic, which were then further divided [9]. A total
of ten attributes were then used to quantify the impacts of the
phosphorus and fishery policies on the objectives. Participants
chose attribute weights by the tradeoff method, a standard
approach in which users state how much of one attribute
they would be willing to sacrifice for a given improvement in
another [10].

For simplicity, we assumed that each single attribute utility
function is linear between the worst (ui = 0) and best (ui = 1)
levels of its attribute, as defined by each participant; if a value
of xi falls outside that range, then it was assigned a utility of 0
or 1, as appropriate.

F. Application of the Multidimensional Spline

For a given research project, the decision tree with discrete
alternatives considers three possible outcomes Z of the project,
three phosphorus management options, 27 fishery management
decisions, 108 lower trophic level scenarios (ΘLTL), and five
Latin Hypercube samples for other uncertainties ΘOTH, so that
the tree has a total of 43 740 branches, as noted previously.
Based on the LEEM simulation results, we constructed the
multidimensional cubic splines required by the procedure in
Section II. Once the splines were obtained, the computing time
of the procedure described in Section II in finding the optimum
in the continuous decision space required about 2 min of clock
time on an advanced PC.
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TABLE I
SUMMARY OF SEVEN DECISION PROBLEM STRUCTURES

TABLE II
AVERAGE OPTIMAL DECISION ACROSS ALL COMBINATIONS OF WEIGHTS AND PROBABILITIES JUDGMENTS

IV. RESULTS

Here, we emphasize that the optimal decision and the
value of information can be affected by the structure of the
problem, including the decision space and which uncertainties
are considered. In order to assess the impact of simplifying
the problem, we consider seven different problem structures
that differ in terms of the decision space (continuous spline
versus discrete, just fisheries management versus fisheries and
phosphorus management), uncertainties (just ΘLTL versus both
ΘLTL and ΘOTH), and risk attitude (risk neutral versus risk
averse).1 Table I summarizes the seven problems.

In Sections IV-A–D below, we consider just a one-stage
decision problem, disregarding alternatives to obtain additional
information. First, we discuss optimal management strategies a
developed without any additional information (Section IV-A),
the expected deterioration in performance if we assume the
wrong problem structure (Section IV-B), and whether value or

1Note that we are treating the use of a risk-averse utility function as a “sim-
plification,” although, in fact, it is more complicated to apply than a risk-neutral
(linear) function. Thus, a comparison of structures 1 and 5 should be viewed as
an indication of the cost of using the wrong risk attitude, rather than the cost
of “simplification.” There are several methods, such as the certainty equivalent
and probability equivalent techniques, to elicit risk attitudes when calibrating
utility functions [1]. However, due to lack of time in the workshops, we did
not ask the participants to apply such a method. Instead, for simplicity, we use
a constant risk attitude function, ui(xi(as, Θ)) = a − b(e−cx), where a and
b are constants to scale each ui from zero to one (worst to best), respectively,
and c, which is called risk tolerance, is positive for increasing utility functions
and negative for decreasing utility functions when b is positive. Furthermore,
the greater the risk aversion, the greater c becomes in absolute value. Many
case studies and empirical research show that the attitude of decision-makers
is often risk averse because they want to achieve their objectives with more
certainty (e.g., [18] and [19]). In contrasting problem structures 5 and 6, we
assume an exponential function in which xi = 0.3x∗

i + 0.7xi∗ is indifferent
to a 50 : 50 lottery between the best value x∗

i and the worst value xi∗. For each
single-attribute utility function, we used a different utility function because each
attribute has different lowest and highest values.

probability judgments make more of a difference in optimal
decisions (Section IV-C). The effect of disregarding uncertainty
upon ECIU results is also described (Section IV-D). In contrast,
if research would reduce uncertainty, and its expected benefits
(in terms of better management) would exceed its cost, we
should consider undertaking it. Section IV-E reviews the EVPI
results, along with EVII for the four research projects. In that
analysis, we consider 64 combinations of eight sets of value
judgments (each of the six manager’s value judgments, plus
the mean weights and equal weights) and eight sets of prior
probability judgments (the six manager’s probabilities, along
with the mean probabilities and equal probabilities).

A. Single-Stage Optimal Strategies

In this section, we give an example of how optimal strategies
depend upon the representations of the decision space and un-
certain parameters based on assumptions described in Table I.
For example, Table II shows the average of the optimal deci-
sions aopt obtained for each of the 64 combinations of weights
and probability judgments. To describe the decisions, the range
of each strategic variable is rescaled from 0 to 1. For example, 0,
0.5, and 1 for phosphorus loading are equivalent to 50%, 100%,
and 150% of the current GLWQA target, respectively.

From the fisheries managers’ point of view, in most cases,
alternatives resulting in an increase over the current level of
phosphorus are preferred (11 000 tons/year, corresponding to
P loading = 0.5). This is because the increased phosphorus
loading level enhances fisheries harvests, which these managers
weigh more heavily than other attributes. Furthermore, in most
cases, optimal harvests for all three categories of fisheries tend
to be higher than the historical level (0.5).

However, the decisions are not the same under all seven
problem structures. This means that simplifications to the prob-
lem structure can change the decision. The aspects of problem
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TABLE III
EXPECTED LOSS OF UTILITY (IN TERMS OF ANNUAL WALLEYE SPORT HARVEST) OF OPTIMAL DECISION

FROM EACH PROBLEM STRUCTURE COMPARED TO PROBLEM STRUCTURE 1, AVERAGED ACROSS ALL

COMBINATIONS OF WEIGHTS AND PROBABILITIES JUDGMENT (TONS PER YEAR)

structure that seem to be less important are discretization and
consideration of phosphorus levels. The results of problem
structure 2 deviate least from problem structure 1, implying that
the use of a discrete set of alternatives is the least distorting
of the simplifications considered here. This is because the
optimal decisions for the continuous case often lie on the upper
or lower bounds of the decision variables and so happen to
coincide with the discrete alternatives. Meanwhile, on aver-
age, omitting phosphorus management alternatives does not
appreciably change optimal fishery exploitation. This implies
that the interactions between fisheries and nutrient management
may not be important, even though, in theory, lower nutrient
levels should imply lowered fishery productivity.

In contrast, other changes in the problem structure can mat-
ter. For instance, if managers are risk averse (structure 5), opti-
mal smelt mortality (trawling) is reduced, but optimal walleye
mortality (sport fishing) is increased, on average, compared to
the risk-neutral case (structure 1). As another example, optimal
decisions that consider all uncertainties (structures 1, 2, 3, and
5) can differ from optimal decisions that only consider lower
trophic uncertainties (structures 4, 6, and 7). In particular, the
optimal levels of trawling and gill netting in problem structures
4, 6, and 7 (structures that omit nonlower trophic level uncer-
tainties) diverge greatly from their levels in structure 1. When
these other trophic level uncertainties are omitted, trawling for
smelt increases, but gill netting of yellow perch is reduced.

B. Expected Loss of Utility Due to Simplified
Problem Structure

Decisions can be affected by a problem structure, as a
comparison of the different rows in Table II shows. In this
section, we estimate the expected deterioration in performance
if we assume the wrong problem structure. For this analysis,
we assume that problem structure 1 (base case) is the “true”
problem structure. This structure considers the interaction be-
tween phosphorous loading level and fisheries management, a
continuous decision space, neutral attitudes toward risk, and
ΘOTH, which are uncertainties other than lower trophic level
uncertainties.

The expected loss of utility associated with the optimal
decision from an incorrect problem structure S, assuming
that the assumptions of problem structure 1 are true, can be
calculated as

Expected Loss of Utility of Problem

Structure S’s Optimal Decision

= E
[
U

(
X(aopt|Structure 1)|PS 1

)]

− E
[
U

(
X(aopt|Structure S)|PS 1

)]
(8)

where S = 2, . . . , 7;E[U(X(a)|PS 1)] is the expected utility
of alternative a, given the utility function and uncertainties
considered in structure 1; and aopt|PSS is the optimal strategy
chosen under structure S.

As an example, the expected loss of utility of problem struc-
ture 2’s optimal decision (i.e., S = 2) represents the expected
loss resulting from discretizing the decision space when the true
decision space is continuous (i.e., this can be interpreted as “the
value of the spline.”). If S = 5, then this is the expected cost of
assuming risk aversion when real risk attitude is neutral.

For ease of comparison, Table III summarizes the expected
loss of utility (in terms of walleye sport harvest) of optimal
decisions from each problem structure. Differences in expected
utility between alternatives can be translated into a change in a
single attribute by a standard technique in which the variation in
one attribute that yields the same utility difference is calculated
[2] (see [10] for the exact formulas used). Because the losses
in the table are in terms of walleye sport harvest x2, they
depend on the weight w2 assigned to that attribute. As a result,
a low w2 will inflate the ECIU in terms of x2. The values
shown for each problem structure represent the average of the
64 expected losses that result from using each of the eight sets
of probabilities and value.

To put this value in perspective, the mean walleye
sport harvest over 1990–1998 was about 2000 tons/year
(2 307 000 fish [20] times a mean size for 1998 of 0.882 kg
[21]), which at an estimated value to anglers of US $12/fish [22]
implies an annual value of about $28 million. This indicates that
the loss due to a wrong problem structure assumption can result
in a loss of several tens of millions of dollars per year.

As we would expect, the results under problem structure 1
are all zero because the structure 1 is assumed to be the “true”
structure [i.e., the two terms of (8) are identical]. Table III
shows that the expected loss of utility generally increases as the
number of simplifications increases. The exception is problem
structure 4, which differs in just one assumption (exclusion
of nonlower trophic level uncertainties), but results in almost
as much loss as problem structure 7, which differs in three
assumptions (by discretizing alternatives, ignoring phosphorus
management, and like structure 4, excluding nonlower trophic
level uncertainties). Indeed, for some situations (20 cases
from the 64 possible combinations of value and probability
judgments), structure 4 actually results in more loss than
structure 7.

Among the four structures that involve only one simplifi-
cation (i.e., problem structures 2, 3, 4, and 5 represent the
discretization of the decision space, disregarding of nutrient
management, exclusion of other uncertainties, and risk aver-
sion, respectively), problem structure 2 (discretization) yields
the smallest loss. In contrast, as just noted, problem structure 4
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TABLE IV
LOSS FROM USING THE “WRONG” PROBLEM STRUCTURE, ATTRIBUTE WEIGHTS,

AND SUBJECTIVE PROBABILITIES (TON WALLEYE PER YEAR)

TABLE V
AVERAGE ECIU OVER EACH PERSON’S PROBABILITY AND VALUE JUDGMENT IN

TERMS OF WALLEYE SPORT HARVEST (TONS PER YEAR)

(exclusion of nonlower trophic level uncertainties) results in the
most significant impact. The other simplifications (omission of
nutrient management and assumption of risk aversion) result in
losses intermediate between these two extremes. Thus, in this
case, inclusion of all uncertainties should be the highest priority,
followed by capturing risk attitudes and including all decisions,
while considering a continuum of alternatives using a cubic
spline is least important. However, this is not a general result;
the prioritization might well be very different for management
problems other than the specific Lake Erie problem considered
in this paper.

C. What Makes More of a Difference in Decisions—Value
Judgments, Probability Judgments, or Problem Structure?

Optimal decisions are affected by not only the problem
structure as shown in the previous section but also the people’s
judgments concerning probabilities and weights. This section
analyzes how the performance under problem structure 1 can
be diminished by using incorrect probability and value judg-
ments, and compares that loss of utility to that caused by
simplifying the problem structure (in particular, by using the
most simplified problem structure 7 rather than structure 1). We
consider the loss in the expected utility for person i’s values
and probabilities if the optimal solution from using person
j’s values and person k’s probabilities in problem structure
S is implemented instead of the alternative that is best under
i’s values and probabilities and problem structure 1. This
loss is

Loss(PS S, j, k|i) = E
[
U

(
X(aopt|1,i,i)|i

) |PS 1, i
]

−E
[
U

(
X(aopt|S,j,k)|i) |PS 1, i

]
(9)

where E[U(X(aopt|PSS,j,k)|i)|PS 1, i] is the expected utility
(given i’s weights and probabilities under problem structure 1)
of the decision aopt|S,j,k that is made when, instead optimizing,
assuming structure S under j’s values and k’s probabilities.

To gauge the relative importance of weight judgments, sub-
jective probabilities, and problem structure, we calculate the
following three indexes for each person i based on the above
loss definition:

Loss due to wrong problem structure(i)

= Loss(PS 7, i, i|i)
Average loss due to wrong weights(i)

=
∑

j=1,...,8;j �=i

Loss(PS 1, j, i|i)/7

Average loss due to wrong probabilities(i)

=
∑

k=1,...,8;k �=i

Loss(PS 1, i, k|i)/7.

The values are shown in Table IV for all i, which are measured
in terms of equivalent tons per year of walleye sport harvest.
They show that the loss that results from using someone else’s
probabilities for the lower trophic level uncertainties rather than
one’s own is very small compared to the other losses. The
loss due to wrong problem structure is higher, when averaged
across the eight sets i, than the loss due to using someone
else’s weights. However, this difference is not statistically sig-
nificant (when assessed by a paired observation nonparametric
test). As mentioned above, these magnitudes of losses (on the
order of 102–104 tons/year) are equivalent to several million
dollars/year (when evaluated at $12/fish).
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TABLE VI
MEAN EVPI OVER EACH PERSON’S PROBABILITY JUDGMENT IN

TERMS OF WALLEYE SPORT HARVEST (TONS PER YEAR)

D. ECIU

ECIU, the expected cost of disregarding uncertainty when it
actually exists, can only be nonzero if anaı̈ve differs from aopt.
In Table V, the values (termed “ECIU”) shown for each prob-
lem structure represent the average ECIU over the ECIUs that
result from the 64 combinations of each person’s probabilities
and weights judgments. ECIU is expressed as the improvement
in annual walleye sport harvest needed to equate the expected
utility of anaı̈ve and aopt. Our analysis here considers ECIU
with respect to just the lower trophic level uncertainties ΘLTL.2

Because the ECIUs in the table are expressed in terms of the
attribute “walleye sport harvest” x2, those ECIUs depend on the
weight assigned to that attribute (i.e., a low weight on walleye
sport harvest will inflate the ECIU). Because person 4’s weight
on walleye sport harvest is very low compared to the weight
other persons assigned that attribute, the table also shows the
average ECIU in terms of walleye sport harvest without person
4’s ECIU in parentheses.

The results indicate that the cost of ignoring uncertainty in
problem structure 2 (i.e., just discrete options) is the smallest
because the biggest contributor to average ECIU, person 4’s
ECIU, happens to be zero in that case. A smaller ECIU for this
structure is unsurprising, since consideration of just a small set
of discrete alternatives means that decisions are less likely to
change if assumptions are changed than if there is a continuum
of alternatives.

In contrast, under problem structures 3, 5, and 6, the ECIUs
might be as much as half of the annual walleye sport harvest
(2000 tons/year). These values are very different from those of
structure 1. This indicates that the simplification of disregard-
ing phosphorus decisions and their interaction with fisheries
(structure 3) and consideration of risk aversion (structure 5)
may matter the most in ECIU.

However, because the ECIUs in the table are in terms of
walleye sport harvest x2, those ECIUs depend on the weight
assigned to that attribute. As a result, a low w2 will inflate the
ECIU in terms of x2. One participant (person 4)’s weight on x2

is 0.013, which is very low compared to what the other persons
gave that attribute. Therefore, Table V also shows the average
ECIU in terms of walleye sport harvest x2 without person 4’s
ECIU (in parentheses).

2A comparison of structures 1 and 4 in Table V represents an ECIU with
respect to just the other uncertainties ΘOTH because we assumed that the
decisions based on problem structure 1 (base case) are the optimal decisions,
while the values resulting from problem structure 4 in Table V show the
expected loss of performance of problem structure 4’s optimal decisions which
exclude other uncertainties.

Without person 4’s ECIU, the smallest cost of ignoring
uncertainty is under structure 3 (disregarding phosphorus deci-
sions), and the greatest cost of ignoring uncertainty is for struc-
ture 7 (the simplest problem structure). Problem structure 5,
which gives the biggest ECIU among problem structures when
the person 4’s ECIU is included, also results in a relatively large
ECIU (the second largest average value) when person 4’s ECIU
is excluded. These results confirm that our conclusions about
the relatively large impact upon ECIU of these simplifications
are robust with respect to whether person 4’s very high values
are included or not.

E. Two-Stage Problem: EVPI and EVII Results

In the previous sections, we considered only a one-stage
decision problem: which fishing and phosphorus policies are
optimal, given the present state of information? In contrast, if
research would reduce uncertainty, and its benefits (in terms of
better management) could exceed its cost, we should consider
undertaking it. An evaluation of the research requires a two-
stage analysis, as in Fig. 2. Information from research generally
reduces uncertainty without eliminating it. Thus, as we noted
above, the actual value of information (EVII) is equal to or
less than EVPI (and often greatly so). Table VI shows mean
EVPIs over the 64 combinations of each person’s probabilities
and weights judgments.

The first of the three EVPIs for each combination is the
EVPI associated with the uncertain parameters ΘLTL for which
projects A and B provide information: ZMr (mussel phos-
phorus recycling), Zkp (zebra mussel production), AZP (zoo-
plankton production), and AZB (i.e., zoobenthos production).
Therefore, the upper bounds of value of information, EVPI,
from project A and B are identical because those projects
address the same parameters, and the EVPI calculation assumes
that the research result is an error-free parameter estimate. The
second of the EVPIs is for the two parameters with which
projects C and D are concerned: ZMr and g0 (the relation
between phosphorus loading and primary productivity). Conse-
quently, the EVPIs from projectsC andD are the same. The last
row’s values are the EVPIs for eliminating all five uncertainties
(ZMr, Zkp, AZP, AZB, g0). We also show the average EVPI
without person 4’s EVPI in parentheses. As we can see from
the mean EVPIs in the rightmost rows, EVPI based on problem
structure 7 is the highest for all structures, no matter whether
person 4’s EVPI is excluded or not. Projects A and B clearly
have higher potential benefits than projects C and D for all
structures.

To compare the potential value of information for each
project with its cost, we need to translate the cost into an
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TABLE VII
AVERAGE EVII OVER 64 COMBINATIONS OF EACH PERSON’S PROBABILITY AND VALUE

JUDGMENT IN TERMS OF WALLEYE SPORT HARVEST (TONS PER YEAR)

equivalent value of x2. Based on a review of nonmarket
valuation of Great Lakes fishes [22], we used a value of $12 per
fish caught as a basis for comparison. Meanwhile, the costs of
research projects A, B, C, and D are estimated to be $194 K,
$932 K, $813 K, and $149 K, respectively. As the research cost
is a one-time expense, while the ecological benefits of manage-
ment are ongoing, an interest rate assumption is needed; here,
we use 10%/year and a ten-year time horizon for the ecological
benefits. As a result, the break-even points at which the EVPI or
EVII of a project in terms of x2 equals its annualized cost are
2.3, 11, 9.7, and 1.7 tons/year of walleye for research projects
A, B, C, and D, respectively. Therefore, the EVPIs indicate
that the average benefits from any project, no matter which
problem structure is considered, are potentially greater than
its cost.

However, the actual expected benefits of these projects
(EVII) could be much smaller than EVPI, depending on the
reliability of their results. Table VII shows the EVII results for
the four research projects under each problem structure, average
EVII over the EVIIs that result from 64 combinations of each
person’s probabilities and weights judgments.

The first, second, third, and fourth values in each row indicate
the EVII of projects A, B, C, and D under each respective
problem structure. The results show that the EVII ranges from
2 to 652 tons of sport walleye harvest. Except for person 4, the
values are less than 50 tons/year in every case.

Using the cost/walleye and interest rate assumptions of the
previous section, we find that research project A’s benefits
exceed its cost for all problem structures, regardless of whether
the average includes person 4’s EVII. However, for projects B,
C, and D, their benefits depend on whether the person 4’s EVII
is included. The last two rows in Table VII indicate that without
person 4’s EVII averaged in, the expected value of information
from projects C and D is very small. Projects A and B tend
to have higher benefits than C and D because the former
provide information on four of the five uncertain parameters in
ΘLTL, whereas the latter projects shed light on just two of the
parameters. Furthermore, on average over problem structure,
value, and probability judgments, these EVIIs (Table VII),
including person 4’s EVII, are 31%, 24%, 20%, and 17% of
the EVPI values (Table VI) including person 4, for Projects
A, B, C, and D, respectively. Therefore, these results
indicate the Projects A and B tend to be more reliable than
Projects C and D.

V. CONCLUSION

A multicriteria Bayesian decision analysis based on a con-
tinuous decision set has been presented that includes multiple

decisions (including research), uncertainties, and objectives.
Unfortunately, simplification is often necessary in decision
analyses because of the curse of dimensionality, but simpli-
fication can distort decisions and estimates of the cost of
disregarding uncertainty (ECIU) and the value of additional
information (EVPI and EVII). We present a spline approach for
allowing a continuum of alternatives to be considered in such
decision analyses. Such an approach can also be used to inter-
polate between discrete realizations of uncertain parameters in
a decision tree.

We have also undertaken a case study in which the above
methods were applied to Lake Erie phosphorus and fishery
management alternatives. The fishery managers who provided
the utility function weights and subjective probabilities were
asked how easy, meaningful, and useful they found each of
the workshop exercises. In general, the participants felt that
value judgments, including definition of objectives and weight
assessment, were easier and more meaningful than probabilistic
judgments, including prior probabilities and likelihoods of re-
search outcomes [10], although they felt that more time should
be taken for the assessment tasks than what was available in
the study. Decision analysis is now being used by Canadian
fishery interests to assess walleye management policies in Lake
Erie [23]. However, decision analysis is not presently utilized
to set fishing limits, which is the responsibility of the Lake Erie
Committee of the Great Lakes Fishery Commission.

In this paper, we quantified the impact of problem simplifi-
cation for this case study. We find that the optimal decisions are
not the same in all seven problem structures. This means that
simplifications to the problem structure, including discretized
fisheries management options, no consideration of phospho-
rus loading changes, no nonlower trophic-level uncertainties,
and alternative risk attitudes, can change the decision. In the
present case, considering just discrete options (structure 2) does
not often change the solution because the optimal decisions
for the continuous case frequently lie on the upper or lower
bounds of the variables and so happen to coincide with the dis-
crete alternatives. Likewise, narrowing the class of alternatives
considered (disregarding phosphorus management options,
structure 3) has relatively little effect on decisions, although the
estimated ECIUs, EVPIs, and EVIIs do change considerably.
In contrast, the problem structure simplifications that omit
nonlower trophic-level uncertainties (structures 4, 6, and 7)
result in relatively large changes in both decisions and the
ECIU, EVPI, and EVII indexes, as well large expected losses
in performance assuming that problem structure 1 (base case)
is the “true” problem structure. The assumption of omitting
other uncertainties tends to decrease gill netting effort and
increase trawling effort. Assuming that the fishery managers
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are strongly risk averse rather than risk neutral also causes
significant changes in decisions.

Estimates of ECIU, EVPI, and EVII are also affected by
simplifications, often being greatly inflated. Under problem
structures 3, 5, and 6, the ECIUs might be as much as half of the
historical annual walleye sport harvest (2000 tons/year). This
indicates that the simplification of disregarding phosphorus
decisions and their interaction with fisheries (structure 3) and
consideration of risk aversion (structure 5) may significantly
affect ECIU. On the other hand, the simplest case, structure 7
(i.e., discretized fisheries management options, no phosphorus
loading changes, no nonlower trophic-level uncertainties, and
risk attitude) can make the biggest difference in estimates of
both EVII and EVPI. Unsurprisingly, EVII is the most sensitive
for those projects (A and B) for which the estimated value of
information is the highest.

In summary, these analyses show that simplifications in prob-
lem structure can significantly distort the results of decision
analyses, including decisions and indexes of interest (ECIU,
EVPI, and EVII). However, which simplifications have the
greatest effect is likely to depend on the specific problem
studied. We also find that the resulting loss of expected utility
(resulting from selecting suboptimal alternatives) is on the
same order of magnitude as the losses resulting from using
the “wrong” attribute weights in a multiattribute analysis. The
latter is gauged by examining how different fishery managers’
weights change decisions. But, in this particular case, the losses
from using the “wrong” (i.e., a different manager’s) subjec-
tive probabilities have much less of an effect on the decision
analysis.
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