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Abstract—Three-dimensional finite-difference time-domain
(FDTD) and pseudospectral time-domain (PSTD) algorithms,
with perfectly matched layer absorbing boundary condition, are
presented for nonmagnetized plasma as a special case of general
inhomogeneous, dispersive, conductive media. The algorithms are
tested for three typical frequency bands, and an excellent agree-
ment between the FDTD/PSTD numerical results and analytical
solutions is obtained for all cases. Several applications, such as
laser-pulse propagation in plasma hollow channels, surface-wave
propagation along a plasma column of finite length, and energy
deposition of electron cyclotron resonance plasma source, demon-
strate the capability and effectiveness of these algorithms. The
PSTD algorithm is more efficient and accurate than the FDTD al-
gorithm, and is suitable for large-scale problems, while the FDTD
algorithm is more suitable for fine details. The numerical results
also show that plasma has complex transient responses, especially
in the low-frequency and resonance regimes. Because of their
flexibility and generality, the algorithms and computer programs
can be used to simulate various electromagnetic waves-plasma
interactions with complex geometry and medium properties, both
in time and frequency domains.

Index Terms—Finite-difference time-domain method, perfectly
matched layer , plasma, plasma applications, plasma sources, pseu-
dospectral time-domain method.

I. INTRODUCTION

I NTERACTION between electromagnetic waves and plasma
has been an important research topic. It has found exten-

sive applications in both laboratories and industry, such as iono-
sphere wave propagation, short-pulse laser-plasma interaction,
and microwave excited plasma source for semiconductor pro-
cessing.

Plasma is a highly frequency-dispersive medium, and its fre-
quency dispersion can significantly change the electromagnetic
response in the medium. For an operating frequency lower than
( ), close to ( ), and higher than ( ) the
plasma frequency , the electromagnetic fields have drastically
different behaviors. In addition, the collision frequency, an-
other medium parameter, has important effects on the attenua-
tion of waves in plasma. These properties greatly increase the
complexities and difficulties of numerical solutions.
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In recent years, finite-difference time-domain (FDTD)
method, one of the most powerful full-wave computational
methods, has been applied to plasma to incorporate the fre-
quency dispersion. Three main classes of algorithms have
been proposed: recursive convolutions (RC) [1]–[3]; auxiliary
differential equation (ADE) or direct integration (DI) [4]–[6];
and Z-transform (ZT) [7]. It is reported that among these
methods, the modified version of RC, i.e., the piecewise-linear
recursive convolution (PLRC) method, is most accurate and
requires the least memory [3], [6].

When simulating an open-region problem, all previous work
on FDTD for plasma application employed absorbing boundary
conditions (ABCs), such as Mur’s [8] and Liao’s [9] ABCs, to
truncate the computational domain. Despite their success, these
ABCs provide only limited absorption to waves within a specific
range of incidence angles and frequency. Recently, a highly ef-
fective ABC, the perfectly matched layer (PML), was presented,
which at the continuum limit, gives zero reflection at the ab-
sorbing boundary for all frequency, and all angles of incidence
[10]. In addition, the PML is ideal for parallel computation. The
PML has been demonstrated to be the most efficient ABC to
date, and found intensive applications for various nondispersive
and dispersive media when combined with the FDTD method.
However, to our knowledge, the PML has not been applied to
plasma until very recently [11], [12].

Although the FDTD method has found widespread suc-
cessful applications, to ensure the accuracy of the computed
spatial derivatives of electromagnetic fields, the FDTD method
requires a fine spatial discretization of more than 10 cells
per minimum wavelength, which limits the scale of problem
solvable by FDTD method with the existing computation
resources. As one of the improvements, the pseudospectral
time-domain (PSTD) algorithm has been recently developed for
nondispersive media, and proves to provide high accuracy and
efficiency for large-scale problems [13]. This new algorithm
was then extended to general dispersive media [12] and for
ground-penetrating radar applications in dispersive media [14].
The efficiency of the PSTD method is due to the accurate
approximation of spatial derivatives using the fast Fourier
transform (FFT). Hence, the spatial sampling rate in the PSTD
method approaches the Nyquist sampling rate, i.e., two points
per minimum wavelength. A comparative study of the FDTD
and PSTD methods for nondispersive media can be found in
[13].

In this paper, three-dimensional (3-D) FDTD and PSTD
algorithms incorporated with the PML are presented for plasma
as a special example of general inhomogeneous, dispersive
media. Section II develops the formulation of algorithms,
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and Section III gives several examples for validation and
applications.

II. FORMULATION

A. PML Equations for Dispersive Media

The details of PML formulation for general dispersive media
have been developed in [11], [12]. Here, we specialize this for-
mulation to plasma applications.

According to the PML approach [15], all the fields and
sources, , , , , and , are split in the following forms:

(1)

For an isotropic, conductive, inhomogeneous, linear permit-
tivity dispersive medium, the modified Maxwell’s curl equa-
tions for the split fields ( ) in the time domain can be
written as [11]

(2)

(3)

where and correspond to the real and imaginary parts
of the complex coordinate stretching variable [16], respectively,
and are chosen independent of frequency inside the frequency
band of interest. When and , the above equations
reduce to the conventional Maxwell’s equations.

Since both and have two scalar components per-
pendicular to , and also has the two corresponding com-
ponents due to the constitutive relations of the media, Eqs. (2)
and (3) consist of a total of 12 scalar equations. These equations
are insufficient to solve the total 18 field components. The re-
maining equations will be given by the constitutive relations as
discussed in the next section.

B. Recursive Convolution Approaches

Noting that the constitutive relations take the same form for
all split components, we omit all the superscript in this sub-
section for simplicity.

For a linear dispersive medium, the relationship between the
electrical flux density and the electric field intensity in the time
domain is described in a convolution integral form as

(4)

where
free-space permittivity;
relative permittivity at ;
electric susceptibility.

Equation (4) shows the nonlocal temporal relation between
and for frequency-dispersive media.

Similar to the transfer function of a linear system, the time-
domain susceptibility functions for a linear-dispersive medium

can be generally expressed as the summation of exponentially
damped sinusoids, i.e.,

Re Re (5)

where is the unit step function, and are the pole and
residue, respectively. When and are real, and all other
derived functions below are also real.

To evaluate (4), we introduce a unified linear approximation
to over the time interval as follows,

(6)

It is noted that (6) corresponds to the recursive convolution (RC)
[1] when , and to the PLRC [3] when .

Using (5) and (6), the convolution integral in (4) is then trans-
formed into the discrete convolution summation

Re (7)

where

(8)

for

for
(9)

for

for .
(10)

The above equations, together with the recursion relations for
and [11], give the recursive convolution formula-

tion for general dispersive media. Plasma can be considered as
a special example.

For unmagnetized plasma, the frequency-domain suscepti-
bility function is given by

(11)

where is the angular plasma frequency, andis the colli-
sion frequency. The corresponding time-domain susceptibility
function is

(12)

Hence, this medium is a two-pole ( ) system in (5), with
, , .
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C. Time-Stepping Equations

With the help of the recursive convolution equations, we can
now proceed to solve Maxwell’s equations by using the FDTD
and PSTD algorithms to discretize the split equations (2) and
(3). We obtain the electric field time-stepping equations as fol-
lows

(13)

where

Re

(14)

(15)

and

Re (16)

Re (17)

The magnetic field time-stepping equations remain un-
changed for magnetically nondispersive media [16]. Therefore,
given the fields at earlier time , we can find the fields
at .

D. FDTD and PSTD for Spatial Derivatives

The FDTD method for the spatial derivatives on the
right-hand side of (13) remains the same as Yee’s scheme [11].
In the PSTD algorithm, the spatial derivatives are approximated
by FFT’s instead of finite differences. Also, instead of using
Yee’s grid in the FDTD method, we use a centered grid in
which all field components and material parameters are located
at the center of each cell. Thus, (13) becomes

(18)

and the magnetic field time-stepping equation is given by

(19)

Fig. 1. (a) The source function. (b) Its frequency spectrum.

In the above equations, and denote the forward and in-
verse FFT’s in direction, respectively, and is Fourier vari-
able in the direction.

III. N UMERICAL RESULTS

In all numerical calculations, the PML equations are used
in both the interior region and the matched layers. Ten cells
of PMLs are used outside the interior region as the absorbing
boundary condition. An electric or magnetic dipole is used as a
source. The time function of the source takes two forms: i) the
first derivative of the Blackman–Harris window function with
central frequency [16] for pulse excitation; and ii) the sinu-
soidal function for single frequency excitation.

A. Validation

To validate the algorithm, we compare the FDTD and PSTD
results with analytical solutions for three test examples. Here the
analytical solutions are obtained through an inverse fast Fourier
transform (IFFT) of the frequency-domain analytical solutions.
In the FDTD and PSTD calculations, the solution region is di-
vided by 64 64 64 cells. The PSTD results for all test ex-
amples have a similar accuracy. Thus, we only show one test
example.

First, we consider the transient field produced by an elec-
tric or magnetic dipole in infinite homogeneous plasma. The
source is located at the origin. The central frequency of source
is GHz, and the source function and its spectrum are
shown in Fig. 1. The plasma parameters are those of Medium I
in Table I, and Fig. 2 exhibits the real and imaginary parts of the
permittivity. These plots are representative for all other cases in
the following. Fig. 3(a) and (b) compare the FDTD results with
the analytical solutions for the normalized or produced
by an electric or magnetic dipole oriented in thedirection. In
this example, the operating frequency band is near the plasma
frequency where significant resonance is observed. We refer to
this frequency band as the resonance region.
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TABLE I
PARAMETERS FORPLASMA

Fig. 2. Complex permittivity of plasma (Medium I).

(a)

(b)

Fig. 3. (a) TheE field excited by an electric dipole, and (b)H field excited
by a magnetic dipole in homogeneous Medium I.f = 2:45 GHz, r =
(0; 0; 0), r = (5; 0; 6:25) cm,�x = �y = �z = 0:3125 cm,�t = 1:25
ps.

Next, we use the same geometrical and excitation model as
above, except that Medium I is replaced by Medium II in Table I.
In this example, the operating frequency band is now lower than
the plasma frequency, which is the most dispersive range of the
medium. We refer to this frequency range as the low-frequency
region. Fig. 4 shows both the FDTD and analytical results.

The third test example is the transient radiation from an
-directed electric dipole in an infinite homogeneous plasma

(Medium III). The operating frequency band is higher than
the plasma frequency, where the dispersion is minimum. This

Fig. 4. TheE field excited by an electric dipole in homogeneous Medium II.
f = 2:45 GHz,r = (0; 0; 0), r = (2:2; 0; 4:) cm,�x = �y = �z =
0:2 cm,�t = 0:5 ps.

Fig. 5. TheE field excited by an electric dipole in a homogeneous plasma
(Medium III). f = 1:8868� 10 Hz, r = (0; 0; 0), r = (0; 0; 3:4069)
�m,�x = �y = �z = 0:22712 �m,�t = 0:025 fs.

frequency range is referred to as the high-frequency region,
where relative small distortion is expected for waves. Fig. 5
compares the PSTD result with analytical solutions for an elec-
tric dipole at the central frequency Hz. The
discretization is m,
fs. (The FDTD result, with m,

fs and for exactly the same useful volume, has a
comparable accuracy, and is not shown here.) In this example,
the FDTD requires a sampling rate six times higher than the
PSTD in each direction. Because both methods use ten cells
of PML in each side of the boundary, the resulting grid size is
therefore, 32 32 64 for the PSTD, and 92 92 284 for
the FDTD method. Note that the useful volume (excluding
PML regions) in both methods is exactly the same, that is
12 12 44 (where m is the volume
of a PSTD unit cell). Also note that (thus, the number of
time steps) is chosen the same, so that it satisfies the stability
condition and accuracy in both methods. Although the PSTD
stability for this case allows a much larger , for an adequate
accuracy has to be chosen as small as that in the FDTD
method because the temporal derivatives are obtained by finite
differences in the PSTD as in the FDTD method. (The accuracy
of temporal derivatives in both methods is of second order.)
The CPU time for each time step is 101.78 s for the FDTD,
and 2.667 s for the PSTD method. Thus, the PSTD method is
38 times faster.

Note that in all examples, excellent agreement is found be-
tween the numerical results and the analytical solutions, and the
RC and PLRC approaches give about the same accuracy.
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(a)

(b)

(c)

Fig. 6. (a) Geometry of a 2-D plasma hollow with a finite wall thickness. (b)
Laser pulse propagation in the hollow. From bottom to top, snapshots at time
stepn = 5000; 10000; 15000; and20000. (c) Comparison of the laser pulse
relative amplitude in hollow, air, and homogeneous plasma.

B. Applications

To demonstrate the effectiveness of the algorithms, we con-
sider several novel applications of plasma.

1) Laser Pulse Propagating in Transversely Inhomogeneous
Plasma Hollow Channels:One of the important applications
of short-pulse laser-plasma interactions is the use of plasma
as a particle-accelerating medium [17], [20]. To obtain a long
acceleration distance, a new scheme was proposed that uses
a hollow channel embedded in a homogeneous underdense
plasma to guide short laser pulse [17], [18]. The principle of
the plasma channel is similar to those of the optical fiber. The
existing analysis of hollow plasma channels uses analytical
solution, and is limited to sharp wall of hollow channel [17] or
planar layered hollow channels [18].

Here we consider laser propagation in a two-dimensional
(2-D) plasma hollow waveguide with a more realistic, finite
thickness wall. Fig. 6(a) shows the cross section of the hollow.
Air fills in the hollow, and the parameters of plasma are
those of Medium III in Table I. Six plasma layers, each of
thickness 0.0533m, are placed the inner side of the interface
of the hollow. The values of in these transition layers are
assumed to be linearly distributed between air and Medium
III, but all layers have the same value of. An -directed
electric dipole located at the origin of the coordinates excites

a 10-period sinusoidal wave at a frequency of
Hz. In the 2D PSTD calculations, the space and time dis-
cretization is m, m, and

s. Fig. 6(b) displays the snapshots of the
laser wave field in the hollow at four different time steps
( ). The laser wave fields are
limited within the hollow. They have a slower attenuation than
those in homogeneous air and plasma, as shown in Fig. 6(c).
In addition, the plasma frequency for underdense plasma is far
smaller than laser frequency, and the high frequency response
of plasma media only results in the small distortion for inci-
dent waveforms. Therefore, the plasma hollow can guide the
incident laser to propagate for a relatively long distance.

2) Surface Wave Propagation Along a Plasma Column:At
frequencies below the plasma frequency, the plasma permit-
tivity is negative in the absence of losses (i.e., the collision
frequency goes to zero). This is a unique characteristic of the
plasmamedium.Suchamedium,whenboundedbyadielectricof
positive permittivity , provided , can support surface
waves (SWs) which are guided along the boundary surface, their
energy flux being concentrated in the vicinity of this surface. The
presence of losses will result in the attenuation of the waves both
in the direction of propagation, and in the transverse direction
[19]. Plasma SWs have found many applications, one of which
is SW plasma sources for material processing [20], [21].

The practical SW plasma sources usually use a plasma column
of finite length contained in a tube made of fused silica. The pre-
vious analysis of properties of SW along a plasma column uses
analytical solutions with an infinite column model, for example
in [22]. In addition, [23] use the FDTD method [24] to analyze
a 2-D SW plasma processing structure in a closed region, where
no ABC is needed. Here, we use the FDTD method to simulate a
finite plasma column in an open region.

To reduce the staircasing error, a plasma square cylinder
model is chosen. The dimension of the cylinder is 2.5 cm2.5
cm 28 cm, and the wall thickness of the tube is 0.25 cm. A
square cross section is on the– plane, and the top part of the
cylinder on the – plane is shown in Fig. 7(a). The parameters
of plasma are rad/s, and
Hz, and the relative permittivity of fused silica is 3.78. The
outside of cylinder is air. The spatial and temporal cell sizes are

cm, and s, and the
number of cells is 56 56 132. An -directed electric dipole
with GHz is located at the origin of the coordinates.
To study the propagation properties, the PML cells are used
at the bottom end of the cylinder to truncate the semi-infinite
waveguide. The distribution of the electric energy at
GHz on the – plane and on the straight lines, ,

( ) cm, are shown in Fig. 7(b) and (c),
respectively. It is obvious that the waves near the surface of the
plasma column undergo less attenuation, therefore, the surface
waves indeed exist. Furthermore, the numerical results also
show that the speed of surface waves is smaller than the speed
of light, confirming the slow wave property of plasma SWs.

Note that here we have simulated a square cylinder. For cylin-
drical structures, one can use these methods in cylindrical coor-
dinates. The implementation of PML, PSTD, and frequency dis-
persion poses no practical difficulties; indeed elements of these
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(a) (b) (c)

Fig. 7. Surface wave propagation along a plasma column in a silica tube. (a) The geometry of the plasma column. The distribution of density of electric field at
f = 2:7 GHz (b) ony = 0 plane and (c) along straight linesy = 0 cm,z = 2:5i (i = 1; 2; . . . ; 6) cm.

(a) (b) (c)

Fig. 8. (a) The geometry of ECR. The distribution of density of electric field ony = 0 plane in (b) the ECR in gray level and (c) in contour plot .

methods can be found in [30]–[32]. An alternative solution is to
use a multidomain PSTD algorithm currently under our devel-
opment.

3) Power Deposition of Electron Cyclotron Esonance (ECR)
Plasma Source:The ECR plasma source is a new generation of
high-density plasma sources for material processing developed
rapidly over the past ten years [23]–[26]. In an ECR source,
microwave power is used to excite plasma discharge through
ECR heating. The simulation and design of ECR sources require
the solution of both electromagnetic field and plasma discharge
behavior in a self-consistent manner. As the first step, one needs
to solve for the microwave field distribution or power deposition

in the region of interest. References [27]–[29] used FDTD to
model the ECR source, but did not account for the dispersive
effect of plasma when using a single frequency excitation of
finite time duration.

In the following, we consider a model of compact ECR
plasma source, as depicted in Fig. 8(a). The center conductor,
quartz dome, and plasma region are cylinders, but for simplicity
the outer conductor is taken as rectangular. The loop antenna is
modeled by a magnetic dipole, located at cm.
The electric parameters of quartz are , , and
the parameters of plasma are those of the Medium III in Table I.
For simplicity, we ignore the effect of the permanent magnets,
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as in [28]. In the FDTD simulation, the computational domain
is divided into 36 36 100 cells. Fig. 8(b) and (c) show the
distribution of the density of electric field at GHz
in ECR source in the forms of gray-level and equal-value
contours. Note that the distribution is not symmetrical about
the central axis because of the location of the excitation. These
visualized results will help the design of the ECR plasma
source.

4) Discussions:Finally, we are in position to make a com-
parison between the FDTD and PSTD method. For large-scale
problems the PSTD method has significant advantages over the
FDTD method in terms of CPU time and computer memory,
as well as in the accuracy of algorithm. To achieve reasonable
accuracy, the FDTD algorithm requires more than ten points
per minimum wavelength, while the PSTD algorithm allows
a near-Nyquist sampling rate. For 3-D problems, this results
in a significant saving of computer memory and CPU time.
However, if the geometry has subwavelength details or curved
boundaries (for example, a meshed human head) which require
a small spatial cell size in both FDTD and PSTD methods, the
FDTD method may be more advantageous. This is because for
3D problems the CFL stability condition for the FDTD (

) is better than the PSTD method ( )
(see derivation in [13]), and because has to be small for
both methods as required by the geometrical description. In
this case, even though the PSTD is applicable, it will be slower
than the FDTD method. For example, for the same grid size of

, the CPU time per time step in PSTD is 63% higher
than that in FDTD method. We are currently developing a mul-
tidomain PSTD method for more general applications.

IV. CONCLUSION

We present 3-D FDTD and PSTD algorithms with the PML
absorbing boundary condition for plasma as a special case of
general inhomogeneous, dispersive, conductive media. The al-
gorithms are tested for three typical frequency bands, and an
excellent agreement between the FDTD/PSTD results and ana-
lytical solutions is obtained for all cases. Several novel applica-
tions are demonstrated for laser in a transverse inhomogeneous
plasma hollow channel, and the energy deposition in microwave
excited SWs and ECR plasma sources for material processing.
The numerical results show that the PSTD algorithm is more
efficient and accurate than the FDTD algorithm, and is suitable
for large-scale problems. The algorithms proposed are ideal for
parallel computation, since the same code is shared both in the
interior computational region and the outer matched layers. Be-
cause of their flexibility and generality, the algorithm and com-
puter program can be used to simulate various electromagnetic
waves plasma problems with complex geometry and media con-
stitution, both in time and frequency domains.
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