
18 IEEE MICROWAVE AND GUIDED WAVE LETTERS, VOL. 8, NO. 1, JANUARY 1998

An Accurate Algorithm for Nonuniform
Fast Fourier Transforms (NUFFT’s)

Q. H. Liu, Senior Member, IEEE, and N. Nguyen

Abstract—Based on the(m;N; q)-regular Fourier matrix, a
new algorithm is proposed for fast Fourier transform (FFT)
of nonuniform (unequally spaced) data. Numerical results show
that the accuracy of this algorithm is much better than previ-
ously reported results with the same computation complexity of
O(N log

2
N). Numerical examples are shown for the applications

in computational electromagnetics.

Index Terms—Discrete Fourier transforms, Fourier series, in-
terpolation, nonuniform fast Fourier transform (NUFFT).

I. INTRODUCTION

FAST Fourier transform (FFT) has been enjoying wide-
spread applications in numerical analysis and other ar-

eas of applied mathematics since Cooley and Tukey [1]
established, in the 1960’s, a powerful fast algorithm for
calculating discrete Fourier transforms. The requirement for
using FFT algorithms is that the input data must be equally
spaced. In many practical situations, however, the input data
is nonuniform (i.e., not equally spaced), and hence the regular
FFT does not apply. To overcome this difficulty Dutt and
Rokhlin [2] and Beylkin [3] studied the problem of FFT for
nonuniform (unequally spaced) data.

We propose a new approach to achieve the fast Fourier
transform for nonuniform (NUFFT) data by using a new class
of matrices, the regular Fourier matrices [4]. This algorithm,
also with a complexity of where is the number
of data points, is more accurate than that proposed in [2]
because our approximation error is minimized in the least-
square sense.

One of the important applications of this NUFFT algorithm
is to enhance the newly developed pseudospectral time-domain
(PSTD) method [5], which requires only two cells per mini-
mum wavelength, with the capability of having a nonuniform
grid.

II. FORMULATION

Our aim is to develop a fast algorithm to find the following
summation [2] for :
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where and are
finite sequences of real numbers, with
for and for

and
are finite sequences of complex num-

bers. Note that unlike the regular FFT, ’s are nonuniform
(i.e., unequally spaced).

The idea of Dutt and Rokhlin [2] for solving this problem by
a regular FFT is to approximate a function
of the form

for (2)

where and is a real number, by a small number of
equally spaced points on the unit circle.

We recognize that, in applications, the functiondefined
by (2) takes its values on a finite set only. Therefore, instead
of (2), we can consider the following finite sequence:

for (3)

where (called “accuracy factors”) are chosen to min-
imize the approximation error. The novelty of this algorithm
is that its approximation is optimal in the least-square sense,
which leads to much more accurate results.

A. The Regular Fourier Matrices

For an integer let be an even
positive integer, be positive
numbers, and be a real number. Our aim is to find

to satisfy the following condition:

(4)

where denotes the integer nearest to. Defining matri-
ces and vectors shown in (5) at the bottom of the next page,
and

...

...

(6)

we obtain the equation

(7)
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Observe that (7) is a system of linear equations with
unknowns. Since in our applications , (7) cannot

be expected to have an exact solution. However, we can find
the least-squares solutionof the inconsistent system (7). That
is, to find such that is smallest possible:

(8)

where

(9)

and (10), shown at the bottom of the page, wheredenotes
the complex-conjugate transpose of matrix. Observe that
while , and hence , depends on , the product matrix

is independent of and is uniquely
determined by and . This remarkable property of
is of great importance because it will reduce the number of
operations by our algorithms and is a crucial point of this work.
The matrix , for , called the -
regular Fourier matrix, is a Hermitian matrix of dimension

. The elements of are given by

(11)

where , and .

B. The NUFFT Algorithm

We may choose two different accuracy factors, namely 1)
the Gaussian and 2) the cosine
accuracy factors. In particular, for the cosine accuracy factor,
a closed-form solution can be found for (11):

(12)

This solution saves many arithmetic operations. Unfortunately,
we are not able to find a corresponding closed-form solution
for the Gaussian accuracy factors. Because of this, it is only
sensible to use the Gaussian accuracy factors when many

repeated NUFFT’s are required for the samepoints, since
then one can precompute (8) for all the subsequent NUFFT’s.

In summary, our NUFFT algorithm consists of following
steps.

1) Compute by (8) for all and .
2) Calculate Fourier coefficients

3) Use uniform FFT to evaluate

4) Scale the values to arrive at the approximated NUFFT

The asymptotic number of arithmetic operations of this
algorithm is , where . Usually we
choose and .

III. N UMERICAL RESULTS

We apply this NUFFT algorithm to perform spectral analysis
of electromagnetic waves near sharp medium discontinuities.
Shown in Fig. 1(a) is the transverse electric field due to a
transient plane wave normally incident to a thin conductive
dielectric slab of 15 cm thick. The slab has and
S/m, and the background is vacuum. The center frequency of
the transient incident wave is 166.7 MHz (a Blackman–Harris
window time function). In terms of the center frequency, the
slab is only of the wavelength in vacuum. The fast spatial
variation of the field [obtained by the finite-difference time-
domain (FDTD) method with a very fine grid] is depicted
in Fig. 1(a) near the slab. As shown in the figure, in order
to effectively describe the field variation, a fine sampling is
used near the slab, while a much coarser sampling is used
away from the slab where the field has a slow variation.
Fig. 1(b) and (c) shows the excellent agreement of the real
and imaginary parts of the (spatial) spectrum obtained by the
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Fig. 1. (a) Spatial distribution of transient electromagnetic field near a conductive dielectric slab. Dashed lines show interfaces of the slab. Nonuniform
sampling is used to increase the resolution close to the slab. (b) Real and (c) imaginary parts of the (spatial) spectrum of the field obtained by direct evaluation
and by the NUFFT algorithm. (d) Absolute errors from this algorithm and that by Dutt–Rokhlin [2].

Fig. 2. Relative number of operations as a function ofN . Both input data
and the locations of the sampling points are random. The dashed curve is the
theoretically predicted curve passing through the last point.

NUFFT (with cosine accuracy factors and ) and
direct evaluation. Fig. 1(d) displays the absolute error from
our NUFFT algorithm and that from [2]. Quantitatively, the

and errors defined in [2] are and
for our algorithm, and

and for the algorithm in [2]. Our NUFFT
algorithm is more than one order of magnitude more accurate.
This algorithm will benefit the development of a nonuniform
pseudospectral time-domain (PSTD) method for Maxwell’s
equations [5].

Fig. 2 shows the CPU time as a function of in the
NUFFT algorithm. Both the input data and its locations

are obtained by a pseudorandom
number generator with large variations. It clearly verifies that
the algorithm is of complexity .

IV. CONCLUSION

Based on a class of regular Fourier matrices, a new NUFFT
algorithm is developed for unequally spaced data. With a
comparable complexity of , this algorithm is
much more accurate than previously reported results since it
is optimal in the least-squares sense. The algorithm is useful
for computational electromagnetics and other fields of applied
mathematics.
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