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I. Introduction 
In recent years, finite-difference timedomain (FDTD) method has been extended to 

simulate wave propagation in the frequency diapersive media. Most previous work on fre 
quency dependent FDTD method for an unbounded domain u ~ e 8  non-perfectly matched 
layer (PML) absorbing boundary conditions (ABCs) to truncate the computational do- 
main. In thin paper, a 3D FDTD algorithm in presented for general inhomogeneous, dis- 
persive, conductive media. The PML is used as ABC, and the recursive convolution (RC) 
and piecewise linear recursive convolution (PLRC) approachea 11-21 are extended to gen- 
eral dispersive media in a more unified form. Three types of dispersive media, i.e., Lorentz 
media, Debye media, and unmagnetized plasma, are treated as special c ~ ~ e e  of our gen- 
eral formulas. Several ground probing radar (GPR) and plasma application examples are 
demonstrated. 

11. Formulation 
Consider an isotropic, conductive, inhomogeneous, linear permittivity dispersive 

medium. Using the coordinate stretching approach [3] and following a similar procedure 
as in [4], the modified Maxwell's curl equations with the split fields (q = z,y,z) in the 
time domain can be written as 

-m 

Equations (1) and (2) consist of a total of 12 scalar equations, since both EfV) and H('f 
have two scalar components perpendicular to f j ,  and D(S) also has the two corresponding 
components due to the constitutive relations of the medium. These equations are insuffi- 
cient to solve the total 18 field components. The remaining equations will be given by the 
Constitutive relations. 

For a linear dmpersive medium, the relationship between the electric flux density and 
the electric field intensity in the time domain is described by 

t 

D(t) = ~or,E(t) + CO E(7) ~ ( t  - 7 )  dr J 
--P) 

(3) 

where CO is the free-epace permittivity, em is the relative permittivity at w -t CO, and x is 
the electric susceptibility. 

This work waa supported by Environmental Protection Agency through at PECASE 
grant CR-825-225-010, and by the National Science Foundation through a CAREER grant 
ECS-9702195. 

0-7803-4478-2l98/$10.00 0 1998 IEEE 

2014 



The frequency domain susceptibility functions, aa the transfer function of a linear 
system, can be generally expressed an a ratio of two polynomials [l] or in a Trectional form, 
I.e., 

where s = -iw, and so and rq are the complex poles and the corresponding residues. Then 
the corresponding time domain susceptibility functions can be written aa 

where U ( t )  is the unit step function. In (5), N = M ,  R, = rq when all aq and l",, are 
real, and N = M / 2 ,  R, = 2rq when there are M / 2  complex-conjugate pole! pairs (such an 
Lorentz media) which satisfy rq(sq) = r;(s;) since ~ ( t )  ie a r e d  function. 

To simplify (3), we first introduce a uniEed piecewise approximation to E(t) over the 
time interval t E [mat, (m + l)At] an follows, 

It ia noted that Equation (6) correnpondn to the recursive convolution (RC) [l] when 
K,, = 0, and to  the piecewise linear recursive convolution (PLRC) 121 when KO = 1. 

Using (5) and the unified approximation (6), the convolution integral in (3) is then 
transformed into the discrete convolution summation, 

N 

D(n) = coc,E(n) + fo R4Wn)l (7) 
q=1 

where 
n-1 

* q ( ~ )  = [ [i , ,(O) - &(O)] E(n - m) + &(O)E(n - m - 1) I e'@"' (8) 
m r O  

Fkom the above formulas, we derived the recursive relations of Wq(n + l), and D(n + 1). 
With the help of these recursive convolution equations, we can proceed to solve Maxwell's 
equations by using the Yee's algorithm to dmretize the split equations (1) and (2). We 
obtain the electric field time-atepping equations an follows 
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where ciq) and CO) are the known coefficients, and 

7 1 
8 8 

E?(n) = Ep)(n - 1) + -E(S)(n) + -E("(n - 1). 

The magnetic field time-stepping equation ia unchanged for magnetically non-dispersive 
media, as given in 14). 

Up to now, we give the algorithm for general dispersive media. For a given medium, we 
only need a corresponding set of R, and 8, in advance. Here, we also point out that for an 
arbitrary linear dispersive medium, when the discrete spectral magnitude data are available 
for the susceptibility of the medium, the frequency-domain Prony method (FDPM) can be 
used to find directly the poles and residues, i.e. R, and aq [5] .  Therefore, for an arbitrary 
dispersive medium there is no need to fit the dispersive relation with Debye or Lorentz 
models. 

111. Numerical Results 
The algorithm and computer program haa first been applied to  non-dispersive media 

by letting the electric susceptibility or the corresponding parameters go to zero. The 
results obtained are compared with those of [4], and excellent agreement is observed in 
various caws. We also validated the algorithm for both homogeneous dispersive media 
and a dispersive sphere in another dispersive or non-dispersive background medium for 
three typical kinds of dispersive media, i.e., Lorentz medium, unmagnetized plasma, and 
Debye medium. Excellent agreement between the FDTD resulte and analytical solutions 
is obtained for all cases. 

To demonstrate the effectiveneaa of the algorithm, we consider several applications of 
GPR and plaama. In following examples, an electric dipole directed in 2 direction is used 
as a source, and time function of the source is the first derivative of the Blackman-Harris 
window function [4]. Fig. 1 shows the scattered field from two buried minelike objects. 
The buried objects are non-dispersive. The electrical parameters of the earth are chosen 
as Debye media. Figs. 2(c) and 2(b) show the transient radiation from a waveguide backed 
slot covered with and without the plasma, respectively. 

IV. Concluaions 
We present a 3D FDTD algorithm with the PML absorbing boundary condition 

for general inhomogeneous, dispersive, conductive media. The modified timedomain 
Maxwell's equations for dispersive media are expreased in terms of the coordinate- 

and piecewise linear recuraive convolution for arbitrary dispersive media. Several appli- 
cations are demonstrated for subsurface radar detection of cylinders and a sphere buried 
in a dispersive half-space. The algorithm proposed is ideal for parallel computation since 
the same code L shared by both the interior computational region and the outer matched 
layers. Because of their generality, the algorithm and computer program developed can 
be used to model biological materials, artificial dielectrics, optical materials, and other 
dispersive media. 
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Figure 1. The E, Beld distribution of two mine-lika d i eb  buried in a Uebye medium 
half-space. 
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Figure 2. The transient radiated field from a plasma-covered waveguide backed slot. (a) 
Geometry; The E, field distribution without (b) and with (c) plasma. 
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