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I. Introduction

Fast Fourier Transform {FFT) [1] has become a popular computational tool in the
study of physics and engineering since its development in 196(’s. The condition of using
FFT algorithm is that the data acquisition must he equispaced. However, in some cases, the
data acquisition is not uniforinly spaced. Dutt and Rokhlin {2] and Beylkin [3] prescnted
some algorithms for the problems of FFT for nonuniform data. Their idea in solving these
problems by a regular FFT is to approximate a function F(z) = e""zc""', by a small number
of uniform points on the unit circle. Recently, a more accurate algorithm was developed
by using the regular Fourier matrices for the nonuniform forward FFT (NUFFT) {5, 6].
Instead of F(z), it uses F(§) = 5,e'*"9/N where j = —N/2,..,N/2 — 1, and s; arc chosen
to minimize the approximation error. In this work, we use the conjugate-gradient method
and regular FFT (CG-FFT) together with the NUFFT algorithm to develop an accurate
algorithm for nonuniform inverse fast Fourier transform (NU-IFFT).

I1. Formulation
Our goal is to develop fast algorithms to find the forward and inverse solutions for the
following two problems:

N-t
fi =Y axe® N for wy € [-N/2,N/2], j = -N/2,..,N/2~1 (1
k=0
N/2-1
g; = E Bret*si for zj€[-mx}, 7=0,.,N -1 (2)
k=-N/2

Note that unlike the regular FFT, wg and z; in (1) and (2) are nonuniform,

A. The NUFFT Algorithm

The principle of using the regular Fourier matrices [5, 6] to solve (1) and (2) is as
fotlows. For an integer m > 2, let w = /™ 4 be an even positive integer, 3;{(fj =

~N/2,...,N/2-1) be positive numbers, and ¢ be a real number. Here we approximate w/™¢
by interpolation,

[mcl+a/2 _
G = Y X mg(ew*,  for j=-N/2,..,N/2-1 (3)
k=[mc]-q/2

where Xg_jn,) are unknowns to be solved. From {5, 6], the least-gquares solution is X(c) =
F~la(c), where F = A'A, and Ajk = w* (j = -NJ2,.., N/2 = 1,k = [mc] — q/2,...,[nc] +
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q/2), and At denotes the complex conjugate transpose of A malrix. If we chovse Lhe cosine
accuracy factors s; = cos g, a closed-form selution can be found for ax(c)

—~  sin[=(2k - v - q — 2{me — [me])]

.'1 1 — ¢t W (2(me~[me])+q—2k+7)
T=-1,1

(4)

ax(c) =1

The NUFFT algorithm for (1) has been given in {5, 6. By modifying it, we have the
following NUFFT algorithm for (2):
1) Compute Xi(z;N/2r) by X(c) = Fta(c), for 1 = 0,...,q and k= 0,.., N ~ I
2) Calculate Fourier coefficients ug = Oxs; '
3) Use uniform FFT to evaluate

Nf2-1
Uy = Z ug et R/ MmN for | = —~mN/f2,...,mN/2 -~ 1;
k=~N/2

4) Scale the values to obtain the approximate NUFFT

q/2
i = Z X2 N2y Nz, jan)y for j =0, N~ 1.
I=—qf2

The asymptotic munber of arithinetic operations in this algorithm is O(mN logg N), where
m < N. Usually we choose m =2 and ¢ = 8.

B. The NU-IFFT Algorithm
Defining Djx = €%+, we rewrite (2) as

Njt~1

gi= 9. PDp, for j=0,.,N -1 (5)
k=-Nj2

From clementary matrix identities we see that
(D!DYD"' = D' and D~'= (D'D)"'D! (6)

Combining (5) and (6), we have
B =(D'D)"'Dly {7)

Equation (7) is further divided into two consecutive steps for its solution:

1) Utilize the NUFFT algorithm for (1) to solve both DID = SN~V emil=0m (| =

~Nf2,..,N/2 ~1), and yy == Z;’:nl Diig5 (k= —-N/2,.. N/2~1);
2) Use the following CG-FFT method to solve g = (D1D)~'y = B~ty.

in the iterative procedure of the conjugate gradient method for g = B=ly, =z — By is

calculated many times and can be expedited by using the regular FFT, Recognizing that
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By, = Zf:_ol ¢~'0~02x ig a Toeplitz matrix (j,I = —~N/2,...,0,..N/2—1), and by denoting
Bj as 1-D form By = b(j — [}, we obtain

Nj2-1
zi= Y b(i-Dyll), for j=-N/2,.,N/2~1 (8)

I=-~Nj2
Applying the convolution theorem, (8) can be derived as:
zj = {FFTTFFT(b)FFT(y)}}; (9)

If k iterations are required for the CG-FFT method to converge to an accurate solution,
the total number of complex multiplications is proportional to G[kN(2log, 2N +log, N +1)).
Similarly, we can obtain the NU-IFFT algorithm for (1).

III. Numerical Results

We compare Dult-Rokhlin’s algorithm and our algorithm wilh cosine accuracy flactors,
and m = 2 and ¢ = 8. Figures t and 2 arc the examples of the NUFFT and NU-IFFT
algorithms for (2). Figures 1(a) and 1{b) show the real and imaginary parts of input data
B, respectively. Figure 1(c) shows the spatial distribution of output data g;. Figure 1{d)
displays the absolute error from our NUFFT and that from Dutt-Rokhlin's [2]. Quanti-
tatively, the E; and Eo defined in [2] are E; = 2.713 x 107 and E,, = 1.8511 x 107¢
for our algorithm, and Ey = 5.238 x 1075 and Ex = 3.535 x 10~% for the Dutt-Rokhlin’s
algorithm. Figure 2(a) shows inverse input data g;. Figures 2(b) and 2(¢) represent the real
and imaginary parts of output data g for the inversion, respectively, Figure 1(d) indicates
the absolute error from our NU-IFFT and that from Dutt-Rokhlin’s [2]. Quantitatively,
Ey =3.156 x 107% and Ex = 2.390 x 1077 for our algorithm, and E, = 2.3069 x 10~° and
E, = 1.549 x 1078 for the Dutt-Rokhlin’s algorithin. From these results, the accuracy of
our algorithns is about one order of magnitude higher than Dutt-Rokhlin's.

IV. Cenclusions

Based on the CG-FFT method and the NUFFT algorithm, a new nonuniform inverse
fast Fourier transform (NU-IFFT) algorithm is developed for nonuniform data. With a com-
patrable complexity of O(Nlogy N), this algorithm is much more accurate than the previously
reported results since it is optimal in the least squares scnse.
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Figure 2. The NU-IFFT algorithin for (2) hy CG-FFT method. (a) Input data. (b) Real

part of output data. (c) Tinaginary part of sutput part. {d} Absolute crror of cutput data,
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