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1. Introduction

Fast Fourier transform (FFT) has been enjoying widespread applications in numerical
analysis and other areas of applied mathematics since Cooley and Tukey [1] established,
in the 1960s, a powerful fast algorithm for calculating discrete Fourier transforms. The
requirement. for using FFT algorithms is that the input data must be equally spaced. In
tnany practical situations, however, the input data is not equally spaced, and hence the
regular FFT does not apply. To overcome this difficulty Dutt and Rokhlin {2] and Beylkin
[3] studied the problem of FET for nonuniform (unequally spaced) data.

We propose a new approach to achieve the fast Fourier transform for nonuniform data
by using a new class of matrices, the regular Fourier matrices {4, 5. This algorithm, also
with a complexity of O(N log, N) where N is the number of data points, is more accurate

than that proposed in [2] becanse our approximation error is minimized in the least-square
sense.
One of the important applications of this NUFFT algorithin is to enhance the newly

developed pseudaspectral time-domain (PSTD) method [6], which requires only two cells
per minimumn wavelength, with the capability of having a nonuniform grid.

II. Formulation
Our aim is to develop a fast algorithm to find the following sumnation [2]:

N-1
fj - F((I)J‘ — Z akeiw*.tj for j= _N/'Q’...,N/Qm 1, (1)

k=0

where w.= {wo, -+ ,wy_1} and t = {t_n/q,--+,tnsa_1} are finite sequences of real num-
bers, with wy € [-N/2,N/2) for k = 0,---,N — 1 and t; = 2mj/N € |-m,7| for
j=~N/2 N/2~1 a={ag, ,an-1} and [ = {f_ns2,--, fnj2-1} are finite
sequences of complex numbers. Note that, unlike the regular FFT, wi’s are nonuniform.

The idea of Dutt and Rokhlin 2] for solving this problem by a regular FFT is to

. . —ba? i .
approximate a function F(x) = ¢~ ¢'* by a small number of equally spaced points on

the unit circle. We recognize that, in applications, the function F defined by (2) takes its
values on a finite set only. Therefore, instead of (2), we can consider the following finite
sequence

F(j) = 3;6™*N for j=-N/2,---,NJ2-1, (2)
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where g; > 0 (called “accuracy factors”) are chosen to minimize the approximation error.
The novelty of this algorithm is that its approximation is optimal in the Jeast-square sensc,
which leads to much more accurate results.

A. The regular Fourier matrices

For an integer m > 2 let w = ¢ , q be an even positive integer, s; (7 =
—~N/2,---,N/2 — 1) be posttive numbers, and ¢ be a real number, Our aim is to find
Txqs2 (k= 0,---,¢) to satisfy the following condition:

i2w/mN

[mel+q/2
.9_,»wj"'° = Z :ck_[mcl(c)wjk for every j=-N/2,---,N/2-1, 3)
k=[mcj-q/2

where [me] denotes the integer nearest to me.

Since in our applications g << N, equation (3) cannot be expected to have an exact
solution. However we can find the least squares solution of the inconsistent system (3).
That is to find z(c) such that {|.4z(e) — v{e)] is smallest possible. It is shown [4, 5] that

z(c) = F~'a(c), (1)
where
N, j=k
Fie(m, N,g) = ¢ ,(-RIN/2 _ (k=DN/2 (5)
P A
N/2-1
ag(c) = E _gjeiﬁfg(l'Mqu/?“k)J" for k=0,---,g (6)
j==-Nf1

and {mc} = me—[me]. Observe that matrix F(m, N, g), called the regular Fourier matyiz,
is & Hermitian matiix of dimension {g + 1) % (g + 1), and is uniquely determined by m, N
and q. This remarkable property of F' is of great importance because it will rednce the
number of operations by our algorithms and is a crucial point of this work.

B. The NUFFT Algorithm
We may choose two different. accuracy factors, namely (i) the Gaussian s; = e B

and (i) the cosine s; = cos gL accuracy factors. In particular, for the cosine accuracy
factor, a closed-form selution can be found for (6):

. sin{z%-(2k — v — g — 2{mc})]
ax(c) =i Z 1 — et W Qlmel+a-2k+7) 7 @

y=-1,1

This solution saves many arithmetic operations. Unfortunately, we are not able to find a
corresponding closed-forim solution for the Gaussian accuracy factors. Because of this, it
is only sensible to use the Gaussian accuracy factors when many repeated NUFFTs are
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required for the same wg points, since then one can pre-compute (4) for all the subsequent
NUFFTs.

In summary, our NUFFT algorithm consists of following steps:
(1) Compute z;(w) by (4) for j =0,---,qand k=0,..- N — 1.

{2) Calculate Fourier coefficients

T = Z 0y -m,-(wk).

ik mwg)+i=l
{3) Use uniform FFT to evaluate

mNf2-1
2xikj/mN
T= 3 mectilmi
k=—mN/2

(4) Scale the values to arrive at the approximated NUFFT
:
fj = TJ . 8,‘," .

The asymptotic manber of arithmetic operations of this algorithm is O(mN log, N),
where s € N. Usually we choose m = 2 and ¢ = 8.

II1. Numerical Results

We apply this NUFFT algorithm to perform spectral analysis of electromagnetic waves
near sharp medium discontinuities. Shown in Figure 1(a) is the transverse clectric field
due to a transient plane wave normally incident to a thin conductive dielectric slab (¢, = 4
and ¢ = 1 8/m) of 15 cm thick. The fast spatial variation of the field {(obtained by
the FDTD method with a very fine grid) is depicted in Figure 1(a) near the slab, and is
sampled nonuniformly. Figure }(b) shows the excellent agreement of the (spatial) spectral
amplitnde obtained by the NUFFT (with cosine accuracy factors and g = 8, m = 2) and
direct evaluation. Figure 1(c) displays the absolute error from our NUFFT algorithm and
that from [2]. Quantitatively, the Ly and Lo, errors defined in [2] are By = 2.731 x 10~
and Ey, = 2.956 x 1078 for our algorithm, and E; = 3.849 x 10~5 and E, = 3.694 x 10~5
for the algorithmn in [2]. Our NUFFT algorithm is more than one order of magnitude more

accurate.
Figure 1(d) shows the CPU time as a function of NV in the NUFFT algorithm. Both

the input data ag and its locations wy (k = 0,---,N — 1) are obtained by a psendo-

random number generator with large variations. It clearly verifies that the algorithm is of
complexity O(N log, N).

IV. Conclusions
Based on a class of regular Fourier matrices, a new nonuniform fast Fourier transforin
{NUFFT) algorithm is developed for unequally spaced data. With a comparable complex-
ity of O(N log, N}, this algorithm is much more aceurate than previously reported results
since it is optitmal in the lcast squares sense. The algorithin is useful for computational
clectromagnetics and other fields of applied mathematics.
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Figure 1. {(a) Spatial distribution of transient electromagnetic field near a conductive
diclectric slab, Dashed lines show interfaces of the slab. Nonuniform sampling is used to
increase the resolution close to the slab. (b) The (spatial) spectral amplitude of the feld
obtained by direct evaluation and by the NUFFT algorithin. (¢) Absolute errors from this

algorithm and that by Dutt-Rokhlin [2]). (d) Relative number of operations as a function
of N. Both input data and the locations of the sampling peints arc random. The dashied
curve is the theoretically predicted curve O(N log, N) passing through the last point.
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