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I. Introduction
Continuously curved waveguides are used not only for wavegnide bends but also for
feeding or radiating guides for cylindrical conformal slot arrays [1]. In solving the curved
wavegiuide junction problems and the coupling slot and radiating slot problems, oue often
uses the dyadic Green's functions {(DGFs) for curved waveguides and cavities. Although
many expressions of DGFs have been derived for various straight waveguides and cavities,
no expressions of DGFs for curved waveguides and cavities are available. The difficulty is in
that there only exist the longitudinal-section electric modes (LSE) and longitudinal-section
magnetic modes (LSM} in curved waveguides. But these two kinds of modes do not have
the complete orthogonality in the terins of the dot product. Therefore, the usual Ohn-
Rayleigh method is not applicable to the curved waveguides problems. Moreover, unlike
common rectangular waveguides, the complete expression of DGFs for curved guides cannot
be constructed from the potential DGFs. On the other hand, when applied to boundary
integral equations, the usual cxpressions of the DGFs is not convenient for mumerical
computation because of their higher singularity and discontinuity. In this paper, the DGFs
for curved waveguides and cavitics are constructed by the ficlds excited by a unit electric or
magnetic source. The field expressions are derived with the help of the Lorentz reciprocity
theorem and the mode orthogonality, and by adding the source-point term. The common
form of DGFs is reformulated into a form convenient for numerical computation. Finally,
a general procedure for reformulation of DGFs for waveguides is proposed.

I1. Vector Wave Functions in Curved Waveguides

Consider a curved waveguide {or cavity) of rectangular cross section with perfectly
conducting walls, With respect to a cylindrical coordinate system (p, ¢, 2), the inner
waveguide walls are defined by p = p1, p2 and z = 0,¢, and the two ends by ¢ = ¢1,¥2.
There are four possible cases for ends conditions: both ends are matched (Case I) or
shorted (Case 11), the end ¢ = ¢, is matched while the end ¢ = g is shorted (Case I11),
or vise versa (Case IV).

The cigenmodes in enrved waveguides can be classified as either LSE modes or LSM
modes. For the LSE modes, the corresponding vector wave functions are defined as
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where k is the wavenumber, h,, = ﬁ’ - (1mr_/-;:m)7 (Smn(hy) £ 0), J and ¥V are Bessel
functions of first and sccond kiud, the prime on the functions denotes derivative with
respect to the argument, the eige n\mlm*s fimn are the roots of the equation B,......( mb2) =

For the LSM modes, the corresponding vector wave functions are defined as
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where the cigenvalues are the roots of the equation C;, (hmpz) = 0, and ‘I’fm" {p) takes
the same forms of ‘I’,,m,_((,o) except for jin,, replaced by g,., and sine-function by cosine-

function.
It can be shown the the vector wave functions above have the following orthogonal

relations;
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where N, . and N, are the mode normalized constants. These vector wave functions
also form a complete set in the source-free region, and the fields outside the source region
can be uniquely expanded in tertns of these functions. Note that the above orthogonality
is based on the concept of power flow not on these of dot-product as required in Ohmn-
Rayleigh method.

II1. Magnetic-Source Dyadic Green’s Functions
The magnetic-source clectric-field DGF agl)(r,r’ ) and magnetic-source magnetic-

field DGF Eg")(r, r') satisfy the following differential equations and boundary conditions,
respectively

VxVxGO - kG =~ v x To(r — 1), xGoY =0 onthe walls (11)
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The solutions of (11) and (12) can be written in the form {2]
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where (7 = 1,2,3) is a unit vector in an orthogonal coordinate system, and E™)r, 1 ﬁ;.)
and H™}(r, ¢/; 11:;-) are the electric and magnetic fields at the field point r excited by a unit

point magnetic dipole in the f}-direction at the source point r'.

The solution procedure of B (r, v/; }) and H("')(r,r’;ﬂ;) is divided in two steps. -
First, outside the the source region, these ficlds are expanded in terms of the eigenvector
functions, M ma, Nen, Mumn and Npmy, and the expansion coefficients are determined
by using the Lorentz reciprocity and the orthegonal relations given in the previous section.
Then, the source-point term is obtained by using the result of [3] and the duality principle
or by the procodurt- as intmdurod in {2]. Finally, we get
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where Ay, and A, are the constants dependent on end condition (for example, A, =

2jitinn and A, . = 2jemn for Case I).
The electric-source electric- and magnetic-fielkd DGFs are also obtained by using the
above procedure or the duality principle.

I11t. Reformulation of Dyadic Green’s Functions

When the DGFs derived above are applied to the boundary integral equation, there
exist two ain computational difficulties if the source and field points coincide: one is the
treatment of é-function, the other is their higher singularity. In this section, we derive a
new form of the DGF on the curved walls of waveguide.

Because of the localized effect of §-function, the unit vector p in the source-point term
P é(r—r") for an given p-propagating direction can be considered as a constant vector, By
introducing the eigenvector functions of TE and TM modes to p-direction, MEE), NgE),
Mf,”’, N,(u”), and defining L = V1,[)£E) and L,(‘H) = Vt/),(f”, we can expand the é-function
in the source-point terms for magnetic field and electric field, respectively, as follows,
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where g, is the metric coeflicient. For curved waveguides, it is shown that
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where C, = cos{mwz/c). Using the above result, from the expression of the magnetic-
source magn(‘ti( field DGF, after a lengthily manipulation, we obtain
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where a = ¢, 5, = sin(innz/c}, and V, is the tangential derivatives at the surface p = py
where the source and field points are located. Note that in the new expression, the 4-
function term disappears, and the operator V. is introduced. It is the operators V,V}
that increase the order of singularily associated with the dyadic Green’s functions, The
form V{V} is convenicnt for the follow-up treatiment when applying the moment method
to surface integral equations.

A heuoristic procedure can also be used for the reformulation of DGFs. We first
construet the operator V,V; form, then substitute it into the original expression of DGF,
and get the new forin via an arrangement process.

This heuristic procedure can be generalized to the reformulation of the DGFs for a
general waveguide. For an orthogonal curvilinear coordinate system {(u, v, p), we define p as
the propagating direction, and u = u' = ug (at the wall). We give a general reformulation
procedure as foliows,

1) Expand the 8(r — r’) function term using (17) according to the type of the DGF;
2) Introduce the tangential derivatives at the coordinate plane where the waveguide wall
is located
41 8 1 8
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and calculate the term (—~1/k2)V,V}g,n(r — '), where gpn(r — 1') is the expansion
function of the pp'-component of the DGF and takes the same form as the eigen
function to expand the d(r — r') function;

3} Substitute the above result into the original expression of the DGF, cancel the sonrce-
point term, and rearrange the terms in the expression into the desired form with the
vector operator (—1/k*)V, V.

The procedure has been used for the transformation of the DGFs for straight waveg-
uides with rectangular and sectorial cross sections.

IV. Conclusions

The DGFs for eurved wavegnides and cavitics are derived through a simple procedure,
and reformulated into a new forim convenient for numerical computation when both the
source and field points are located at the same wavegunide wall. A general procedure for
reformlation of DGF's is proposed for general wavegnides. The DGFs derived can be used
for solving the problems with curved waveguide coupling and radiating slots, as well as
waveguide junction problems.
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