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I. Introduction

In many applications, such as geophysical subsurface sensing, microwave and optical
wavegnides, one can reduce three-dimensional problems into 2.5-dimensional ones becanse
the inhomogencity is two-dimensional and one of the spatial derivatives in Maxwell's equa-
tion can be simplified by using the Fourier transform. Most previous 2.5-D algorithms
[e.g., 1, 2] were based on the FDTD method and used non-PML absorbing boundary con-
dition. Very recently, the pseudospectral time-domain {(PSTD) method [3, 4] has been
proposed for multidimensional problems. The key point of PSTD method is that it uses
the fast Fourier transform (FFT) other than finite differences to calculate spatial deriva-
tives and uses Berenger's perfectly matched layers [5] to remove wraparound effect caused
by the periodicity assumed in the FFT. In this work we use the PSTD method to solve
2.5-dimensional problems. The theoretical analysis and numerical examples are presented.

II. Formulation
In a Cartesian coordinate system, the three-dimensional Maxwell's equations can be
written using complex stretched coordinate variables e, = a, + i‘fn—} (7 =z,y,2) [4, 6] a8 :
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JEM
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where E= Y. E and similarly for other field components. Equations (1) and (2) con-
n=I,y,z7
sist of a total of 12 scalar equations, since both E and H™ have two scalar components
perpendicular to 4.
The FFT algorithm is used to represent the spatial derivative in equation (1} to yield

gH(m
5t pwa HM = FoUik, F(HxE]} ~ M, (3)

agpt

where F,, and fq‘l denote forward and inverse Fourier transforms in the n direction which
are calculated by FFT's. A similar result can be obtained for equation (2).

Now consider an isotropic medium with twoe dimensional inhomogencity in the zy ptane

and invariant in the z direction. Since the source at z=0 may be electric or magnetic and
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may be an even or odd function of z, the electromagnetic fields and their spatial derivatives
may be even or odd functions of z. The total field can be written as E = E, + E,, where
e and o denote the even and odd parts, respectively. One ean use the cosine and sine
transformns for these two parts, for example,

[s o]

e,k 0 = [ Holop,2,8) costh, )z 3)
0

Ho(z,y, koo t) = fﬂo(x,y, z, t) sin(k, 2)dz (4)
1]

to simplify Maxwell’s equations. It can be shown that sources {Jzo, Jyo, Jrey Mze, My,
M,,) will excite fields (E.,, Eyo, Ese, Hze, H,ﬂ, H.,), and sources (Jze, Jye, Jzay Mzo,
My, M,.) will excite fields (E.., Eye, E:oy Hyoy Hyo, Hze). As an example, if the source
is a horizontal electric dipole directed along the z direction, then only J; # 0 and J, is
even with respect to the z coordinate. Using the sine and cosine transforms and omitting
the subscripts e and o, one can rewrite (2) as:
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OF oBD = k1, (6)
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=00

Similar equations can be written from (1).

In numnerical implementation of the 2.5-D PSTD method, we use FFT to calculate
the spatial derivatives and central dilfcrence for time integration. The stability condition
of 2.5-D PSTD method for a plane wave in a homogeneous nonconductive medium can be
derived as in [4]. 1t is shown that kpaycAt < 2 in the PSTD method (4], According to the
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Nyquist sampling theorem, the FET algorithm provides exact representation for k, < £
and ky < . So from the equation k? = k2 + k7 + k7 we can get the stability condition:

Atg— 8% (11)

In the above, k, is the Fourier integration variable. For the determination of wavepguide
dispersion curves, it can be taken as an input parameter.

I11. Numerical Results

In order to validate the numerical implementation, we compare the results of the 2.5-D
PSTD and FDTD in Figure 1. The medium is homogeneous nonconductive. The electric
dipole source is located at (z,y, 2)={0.2, 0.2, 0) i for Figure 1(a) and at (z, y, 2)=(1.6, 1.6,
0) m for Figure 1(b). The field E, is computed at (z,y, 2)=(0.6, 0.6, 0.3}, (0.6, 0.6, 0.4) m
for Figure 1{a) with 16 cells/Ami, and at (z,y, 2)=(4.8, 4.8, 3), (4.8, 4.8, 4) m for Figure
1{b) with 2 eells/A,in. Figure 1(c) and (d} show the 2.5-D PSTD and FDTD methods for
wave propagation in a conductive homogeneous medium. The source and receivers are the
same as that in Figure 1(b). From Figure 1, it can be seen that the 2.5-D PSTD algorithm
gives accurate results even if the grid density is 2 cells/ Ay

For the application, we compute the open diclectric waveguide which is shown in
Figure 2. The result is matched well witlh [7].

IV. Conclusions

A 2.5-dimensional PSTD algorithm has been developed which can be used to solve
Maxwell’s equations efficiently. The code has been validated by the analytical results and
conventional FDTD method. It is also shown that the 2.5D PSTD algorithm is more
cfficient than FDTD method. Particularly, 2.5D PSTD method can be used to model very
large object because it needs a grid density of only 2 cells/Ayn. The dispersion curve
of a open dielectric waveguide is obtained by using the 2.5-D PSTD algorithm. Further
rescarch work will mode] various waveguide structures, '
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Figure 1. Numerical results of 2.5D PSTD and FDTD algorithms with the analytical
solutions. (a) Az = A, /16. (D) Az = Anin/2. (¢} and (d) Az = A /2 for conductive
homogeneous mediumn.

Figure 2, Open dielectric waveguide a=b, ¢;=13.1¢y, e2=¢g. Normalized dispersion curve

(E,al - 1).



