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L Introduction

The finite-difference time-domain (FDTD) method has been enjoying its widespread
applications in the simulations of transient electromagnetic wave propagation and scat-
tering since it was first proposed by Yee in 1966 {1]. However, as the available computer
memory and computational speed grow rapidly so that unprecedented large-scale problems
can be solved, the FDTD method starts to show its limitation because of its relative large
phase dispersion error. As the problem size increases, so does the required number of
unknowns per wavelength.

In cylindrical coordinates, the conventional FDTD method encounters yet two more
difficulties: (i) the requirement for a very small At because of the high concentration of cells
near the z axis, and (ii) the singularity at the cylindrical axis. Although various remedies
have been proposed, the treatment is not straightforward, and requires extra manipulations
and computation time. In this work we propose a pseudospectral time-domain (PSTD)
method for 3-D eylindrical and 2-D polar coordinates which will overcome these difficulties
and significantly increase the efficicncy.

I1I. Formulation
The cylindrical PSTD algorithm uses the formulations of the quasi-PML {3, 6] and true

PML [2, 6] in cylindrical coordinates. For example, with the quasi-PML, the time-domain
split Maxwell’s equations can be written as [6]
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In the above, the split field components are E, = EY + E, aud Ey = E;") + E;”.
The other set of equations for updating H can be obtained by duality. Note that in the
quasi-PML formulation, there is no neced to split E, and H,. Therefore, the total number
of unknown field components is 10 instead of 12 as for the true PML [6], which is omitted
here for brevity.

The PSTD algorithm uses a centered grid where all ficld components are located at
the center of cach cell. Therefore, the first benefit of this algorithm is the removal of the
singularity at cylindrical axis present in the staggered grid.

In the PSTD algorithm, the treatment in z derivative is exactly the same as in Carte-
sian coordinates [5]. For the spatial derivative 8/0¢, it is casily obtained by FFT since
there is a natural periodicity in the ¢ direction.

The treatment of the p derivative is more complicated compared to the Cartesian
coordinates, simply because that the boundary at p = 0 is not an open boundary. One
way of treating this is to use Chebyshev pseudospectral method which inevitably increases
the number of nodes at p = 0 and has a stringent stability criterion for At. Below we
present two ways to use the Fourier series for p derivatives.

(a) The asymmetric form of PSTD algorithm in p direction
The most straightforward way to approximate the p derivative f(j,, jg)/0p is

a
a_f) ~D,f = f;‘{ik,,}‘,,[f]}, (6)

where F, and F; ! denote the forward and inverse FFT in p direction. Since p = 0 is
a physical boundary, PML cells have to be placed near the outer boundary p = ppaz to
remove the wraparound cffect due to the periodicity of the DFT.

There arc two major disadvantages associated with this approach: (i) More PML cells
(usually around 20) are required near the outer boundary since the periodicity applics here
(in contrast to a perfect electric conductor for the FDTD). (ii) Because of the periodic-
ity, the negligibly small field at p., (due to the PML attenuation) imposes a null-field
condition at p = 0, effectively creating a small ghost source at the cylindrical axis. As ob-
served from numerical experiments, this ghost source, althongh small, produces noticeable
spurious ficlds.

(b) The symmetric form of PSTD algorithm in p direction
A much better way to treat the p derivatives is to use the symmetric form by assigning
a new function for 0 < jg < Ng/2 — 1 (assuming Ny is even) such that

o F(—3" = 1,34 + Ng/2), for j'=-N,,--, -1
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Then the derivative is found by the FFT of these Ny /2 new arrays of length 2N, in a way
similar to (6). The total computation burden is reduced from (a) because only half the
PML cells are needed. With this approach, both disadvantages in (a) have been removed.

III. Numerical Results

Figure 1 shows an example of a line source in a 2-D free space (polar coordinates).
The source has a Blackman-Harris window time function with center frequency f. = 300
MHz, and is located at p, = 1.5 m, ¢, = 87.19°. The computational domain is meshed by
Ny x Ny = 32 x64 cells with Ap = 0.2 m (or about 2 cells per wavelength at the frequency
2.5f.) and At = 12.5 ps. The snapshots show the effectiveness of the 10-layer PML ABC,
while the last sub-plot shows the excellent agreement between the PSTD result and the
analytical solution.

For the PSTD code to solve this problem on a SUN Ultra 1 workstation, it takes 140
seconds for the required 4000 time steps. For an acceptable accuracy, the FDTD method
needs NV, X Ny = 128 x 256 cells, requiring 16 times more computer memory. In addition,
a much smaller time step At = 1.25 ps has to be chosen for stability, requiring a total
40,000 time steps for the same problem. As a result, the FDTD code takes about 7 hours
CPU time to complete this problem, or roughly 180 times slower.

We simulate the same source in an even larger problem. The center of source is
located at (p, ¢) = (35,128) cells in a computational domain of N, x Ny = 64 x 256 cells
{Pmaz = 10 m). Fiftcen receivers are set uniformly around a circle 30 cells away from the
origin, and are 16 cells apart in ¢ direction. The first receiver is located at (30, 16). The
numerical results agree well with analytical solutions, as shown in Figure 2.

Conclusions
The cylindrical pseudospectral time-domain' method provides high accuracy and of-
ficiency for time-domain simulations of waves in cylindrical and polar coordinates. It is
ideal for large-scale problems since, in addition to the advantages in Cartesian coordinates,
it provides two important advantages for cylindrical coordinates:
(1) The singularity at p = 0 is no longer present.
(2) The required number of time steps is reduced from FDTD by a factor of K2, where K
is the ratio of Ap in PSTD and in FDTD. For the example shown, K = 4; It increascs
with the electrical size of the problem.
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‘igure 1. From first to fifth sub-plots, snapshots at time steps n = 500, 1000, 1500, 2000,
nd 2500 (At = 12.5 ps). The last plot compares the PSTD result with the analytical
slution at p = 3.1 m, ¢ = 154.69°. The source is located at p, = 1.5 m, ¢, = 87.19°.
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Figure 2. An array wavcforns in free space.
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