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I. Introduction 
The finitc-tliffc!rc:nc:e time-domain (FDTD) method ha.7 been enjoying its widespread 

applic:at,ions in the sirrnilat,ions of transient electromagnctic wave propagation and scat- 
toring sincc it was first proposed by Yce in 19GG [l]. Ifowever, as the available computer 
niernory anti computational speed grow rapidly so that unprecedented large-scale prohlerm 
can bc solved, thc FDTD method starts to show its limitation because of its relative large 
phase dispersion error. As the problem size increases, so does the required number of 
unknowns per wavclcngth. 

In cy1indric:al coordinatcs, the conventional FDTD method cnc:onntcrs yet two more 
diffic:iiltics: (i) the rtrquirc:nient for a very small At because of the high concctitxatiori of  cells 
near the z axis, and (ii) the singularity at. the cylindrical axis. Although various remedies 
havc been proposcti, the treatment is not straightforward, and rcqniras extra nianipiilations 
anti cornputat,ioii time. In this work we propose a pseudospectral tirnc-dornain (PSTD) 
mc:thotl For 3-D cylindrical and 2-D polar coordinates which will overcome thcse dificulties 
and significaiitly increase tlic oflicicncy. 

11. Formulation 
The cylindrical PSTD algorithm uses the formulations of the quaui-PML (3, G ]  and true 

PMI, [2, 61 in cylindrical coordinates. For oximplc, with the qiiasi-PML, thc! time-domain 
split M,wwcll's eqiiations can be written a.3 [G] 
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BE, 1 O(pff4) 1 aH,, 
dt P dP P a4 

n €7 + (up + ap17)E* + W , , b  Ez(7)d7 = -- - -- - J,, (5) 

In the above, tlie split field cornponcnts arc E,, = Eh4) + E:), and E4 = E:) + E!). 
The othor sc!t of eqnations for uptlating H can he olitaincd by dnalit,y. Notc that in t,ho 
qnasi-PML foriniilatim, there is no need to split E, and H, .  Tlic!rc:fnro, the total niirnhcr 
of nnknown field components is 10 instead of 12 as for the triic: PMI, (61, which is nrriitt,~:tf 
here for brevity. 

The PSTD algorithm iises a centered grid where all field components are locat,cd at  
the center of each ccll. Thcrcfnre, the first benefit of this algoritlim is the removal of the 
singnlarity a t  cylindrical axis prcscrit in the staggered grid. 

In the PSTD algorithm, the treatment, in z derivative is exactly the same as in Cartc- 
sian coordinates (61. For the spatial dcrivativc 8/84, it is c;wily obtainod by FFT since 
there is a natnral pcriodicity in the 4 direction. 

The treatment, of the p derivative is more coniplicatd compared to the Cartesian 
coordinates, simply tiecanse that the tionndary at  p = 0 is not. an open boundary. One 
way of treating this is to iise Chebysliev pseiidospectral method which inevitably incrc:ases 
the niimber of nodes a t  p = 0 and has a stringent stabi1it.y criterion for At. Bclow we 
presctnt two ways to nse the Fonrier series for p derivatives. 

(a) T h e  a symmet r i c  fo rm of PSTD a lgor i thm in  p direct ion 
The most straightforward way to approximate the p derivative 8j( j , , , j+) /ap is 

where F,, and F;' denote the forward and inverse FFT in p direction. Since p = 0 is 
a physical boi~ndary, PML cells have to be placed near the onter honndary p = pWez to 
remove the wraparound cffect due to the pcriodicity of the DFT. 

There are two major divadvantagcs associated with this approach: (i) More PML c:c:lls 
(~~snal ly  aronnd 20) are rcqnired ncar the ontc:r honndary since the poriodicity applics here 
(in contrast to a perfect electric cnndnct,nr for the FDTD). (ii) Because of the periodic- 
ity, the negligibly sinal1 field a t  pInaz (dne to the PML attenriation) imposes a nnll-ficltl 
condition a t  p = 0, effectively crcat,ing a small ghost sonrcc at  the cylindrical axis. As oh- 
served from numerical cxpcrirncnts, this ghost source, altliongh small, prodnccs notic:cahle 
spnrious fields. 

(b) T h e  symmet r i c  fo rm of PSTD a lgor i thm in  p direct ion 

a new function for 0 5 j+ 5 N4/2 - 1 (assnming N+ is even) snch that 
A much tietter way to  treat the p derivatives is to nse tlie symmetric form by assigning 
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Tlion the derivative is fonnd by the F F T  of these N+/2 new arrays of length 2N,, in a way 
similar to (6). The total (:omputation biirdcn is reduced from (a) because only half the 
PML cc!lls arc nccdcd. With this approach, both disadvantages in (a) have been removed. 

111. Numer ica l  Results 
Figure 1 shows an example of  a line sonrcc in a 2-D free space (polar coordinates). 

The sonrcc has a Bliic:kniaii-H;trris window timo function with centcr frcqncncy jc  = 300 
MIlz, and is located at pn = 1.5 m, bS = 87.19”. The computational domain is meshed by 
N6, x N+ = 32 x 64 cells with Ap = 0.2 m (or about 2 cells per wavelength at tlic fri:qnency 
2.5fc) and At = 12.5 ps. The snapshots show the effcctivcness of the 10-layycr PML ABC, 
while the last sib-plot shows the excellent agreement between the PSTD result and tlie 
aiialythl solntion. 

For thc! I‘S’I’D code to solvc! this problem on a SUN Ultra 1 workstation, i t  takes 140 
seconds for tha rcqnircd 4000 t h e  steps. For an acceptable accnracy, tlie FDTD method 
ncwls N,, x N+ = 128 x 256 cells, reqniring 16 tinies more conipiiter memory. In addition, 
a mnch sniallcr tiine stop At = 1.25 ps has to be chosen for stability, reqniring a total 
40,000 t h e  steps for the sanic prohlcm. As a resnlt, tlie FDTD code takcs about 7 honrs 
CPU tirno to complete this problem, or roughly 180 tiincs slower. 

We siinnlatc the saiiic sonrcc in an eveti larger problem. The center of sonrco is 
loc::itcti at ( p ,  6) = (35, 128) calls in a compntational dornain of  N p  x N+ = 64 x 256 c:cills 
(p,,,,, = 10 in). Fiftccn rcccivcrs arc set uniformly around a circle 30 colls away froin the 
origin, and are 16 cells apart in q5 direction. The first rec:oivc!r is located at (30, 16). The 
nnmc!rical rwilts agree well with analytical solntions, as shown in Fignrc: 2. 

Conclusions 
Tlrc cylindric:aI I)s(!iidosI)cctral tiinc-cloniain‘ niotliocl proviiltrs liigh ;icc:iir:lcy and cf- 

ficicncy for time-domain sinnilations of waves in c:ylinclric:iil antl polar coortlinatcs. I t  is 
i(1t::iI for large-scale probloms since, in addition to tlic advantsgcs in Cartesian c:oordinatcs, 
it provitlw two important advantages for cylindrical coordinat.es: 
(1) The singnlarity a t  p = 0 is no longer present. 
(2) The rt:qnirctl number of time steps is reduced froin FDTD by a factor of K2, where K 

is thc ratio of Ap in PSTD antl in FDTD. For tha example shown, K = 4; It  increases 
with the eloct,ric:al size of the problem. 
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‘igure 1. From first to fifth snhplots, snapshots at time stops n = 500, 1000, 1500, 2000, 
nd 2500 (At = 12.5 ps). The last plot comperes tho PSTD r c d t  with the an:ilyt,ic:al 
hition at p = 3.1 in, $I = 154.69”. The source is located at pa = 1.5 m, = 87.19”. 
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