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Abstract—Many applications require time-domain solutions significant staircasing error appears. Furthermore, the cell size
of Maxwell's equations in inhomogeneous, conductive media has to be small enough for all regions in order to accommodate
involving cylindrical geometries with both electrically small and the small-scale structures, wasting much computer memory

large structures. The conventional finite-difference time-domain d tation i Th . f thi Kis to d |
(FDTD) method with a uniform Cartesian grid will result in a and computation ume. e am o IS work IS to develop

staircasing error, and wastes many unnecessary cells in regions@n FDTD algorithm with a nonuniform cylindrical grid to
with large structures in order to accommodate the accurate discretize the computational domain. Small cells are used in

geometrical representation in regions with small structures. In  regions with fine details, while larger cells are used in other

this work, an explicit FDTD method with a nonuniform cylin- - yagigns A gradual transition is used between large and small
drical grid is developed for time-domain Maxwell's equations. A cells
- .

refined lattice is used near sharp edges and within fine geome ) ) ) )
rical details, while a larger lattice is used outside these regions. 10 Simulate wave propagation and scattering in an un-
This provides an efficient use of limited computer memory and bounded medium, absorbing boundary conditions (ABC's)
computation time. We use two absorbing boundary conditions have to be used to absorb outgoing waves. Many researchers,
to a nonuniform cy'llndrlcal grid: 1) the straightforward X~ for examples Liao [7], Lindman [8], Engquist and Majda [9],
tension of Berenger's perfectly matched layer (PML) which is Bayliss and Turkel [10], and Ramabhi [11], have contributed to
no longer perfectly matched for cylindrical interfaces, thus the Yy ) ! ) !
name quasi-PML (QPML); 2) the improved true PML based on ABC'’s. However, these ABC’s cannot be used for problems
complex coordinates. In practice, both PML schemes can provide with oblique interfaces intersecting the outer boundary. Re-
a satisfactory absorbing boundary condition. Numerical results cently, Berenger [12], [13] introduced the perfectly matched
are shown to compare the two absorbing boundary conditions layer (PML), which provides highly effective absorption to
(ABC'’s) and to demonstrate the effectiveness of the nonuniform th tqoi ' ch d Weed 141 h d th
grid and the absorbing boundary conditions. € outgoing Wa_lves. ew an eedon [14] have use e
) - o stretched coordinates to formulate the PML ABC. Kaiz
(Ijr)dex Telr:gﬁ,_EAbsorbl_r;g boun_gary Co”d't'?“s* fyl!”dgﬁ:_co' al. [15] have also validated and extended this ABC to three
ordinates, » honuhiform grid, humerical analysis, ' dimensions. Liu [16] adopts a more general stretching coordi-
nates originally developed by Chew and Liu for elastic waves
I. INTRODUCTION [17]-[19] to conductive media. The extension of PML to con-

IMULATIONS of transient electromagnetic waves in conductive media was also presented in [20] and [21]. Fang and
uctive (lossy) media have many applications such \Mu present a slightly different formulation for two dimensions

medical imaging, nondestructive evaluation, and geophy$#2]- Although quasi-PML (QPML) ABC formulations have
cal subsurface sensing. Finite-difference time-domain (FDTBfeN studied for nonorthogonal grids [23]-[25], only recently
methods are widely applied to simulate transient electr§90rous studies have been done on the PML for cylindrical
magnetic wave propagation [1]-[4]. The predominant FDTEPOrdinates [26]-{30]. o o
algorithms discretize the continuous space with a uniform !N this work, the QPML is first formulated for cylindrical
Cartesian grid. In many applications, however, we have to cdpordinates with a nor?umform grid. AIthough it can be shown
front the cylindrical structures such as in optical fiber comm{Pat QPML does not give a perfect absorption [27], practically
nications, integrated optics, defense industry, and geophysi®#@ &ré able to make the reflection from the QPML ABC
exploration [5], [6]. Moreover, the geometry of interest mayMall €nough. Recently, Chest al. have proposed a complex
consist of both electrically large- and small-scale structurordinate system for the development of a true PML ABC
If we adopt the conventional FDTD method to discretizg)rcylmdrlcal and spherical coordinates [28]. A FDTD method

the cylindrical structure with a uniform Cartesian grid, & developed for two-dimensional (2-D) polar coordinates in
[29]. We improve the true PML in [28] and [29] to make
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a nonuniform grid are developed in Section Ill. Finally, we
validate the algorithm with analytical solutions and show some
applications of the nonuniform cylindrical FDTD programs in

Section V. Ep E
Mo
Il. FDTD FOR A NONUNIFORM CYLINDRICAL GRID -

Consider an isotropic, inhomogeneous medium with space

dependent electric permittivity(r), magnetic permeability
u(r), and conductivitys(r). Faraday’'s and Ampere’s laws g o B
in Maxwell's equations are stated by E: § ",izp
VxE=—p 8 _y (1) S L
8Eat (m, n, p} E¢
VxH=¢c—+4+ocE+J (2
ot Fig. 1. Aunit cellApym X Adm x Azp of the nonuniform cylindrical Yee

h J andM the i d electri d ti ﬂgd The E components are located at the edge centers between cells of
whereJ an are the Imposed electric and magnetc CurreijLizpe sizes, while thér components are located exactly at the face centers

densities, respectively. The introduction of magnetic soMce in each cell. As a result, the FD approximated derivativeE @omponents at
is convenient for modeling small loop and aperture antenné&e’face center§H locations) are locally second-order accurate, while the FD
. . . . approximated derivatives df components at the edge centéfs locations)
which can be approximated as magnetic dipoles. are locally first-order accurate.
The FDTD solution of Maxwell's equations requires the

discretization of (1) and (2). In cylindrical coordinates, (1)

and (2) can be rewritten as zan‘(njg as t_hatdin a uniform FDTD grid. For example, (3) can
e discretized as
1 0E. OF OH
-2 b =—n L — M, (3) P t(/2) _ gt/
b 90 02 i ¢ Hpmav/man = Hymsa s v o)
0, OB. __, 9y, (@) I S E!
9z dp ot T pm - Ay, (Bt p+1/2) — Eomnpr1/2)]
1 (pEs) 1 OE OH. .
_7(8 “5)———8”:—u - M., () +L[El 1241~ B 1/2)0]
p , P (/) ot AZP ¢,m,n+(1/2),p+ ¢.m,n+(1/2),p
1 80H, OH, oF l
Do o o ToEt 6 = Myt (1/2) 0+ (1/2)° (10)

oH, OH. OE,
_0H. _ Byt J 7
9z op o Tobetde (D)

1 a(pH¢) _l aHP —¢ aEZ +OEZ +Jz- (8)
p Op p 09 at lIl. QuUASI-PML AND IMPROVED TRUE PML

As shown in Fig. 1, if we discretize the continuous space Since the formulation of PML irx direction in cylindrical
by a nonuniform cylindrical Yee grid with a variable cell sizecoordinates is the same as that in Cartesian coordinates,
Appn, x A¢, x Az, the spatial derivatives o have to for simplicity, we first consider Maxwell's equations in 2-
be modified from those in a uniform grid. For example, thB polar coordinates for the TEcase. The formulation for
discretized form of (6) in a nonuniform grid can be derived abe TM, case can be easily derived by using duality. Here
we adopt the concept of complex coordinates in [28] to
present two PML formulations for polar coordinates. We use

In the above equations, the time discretization is the same as
in a uniform FDTD scheme.

€ l 1—1
E [Ep,rn+(l/2),n,p - Ep77n+(1/2)7n7p]

2 the complex coordinate stretching variablgs and ¢; such
= o (Ao T D) that (9/0p) — (1/¢,)(8/9p), (8/9¢) — (1/es)(/94). In
/z—(1/2) 1—(1/2) general,e, = a, + iw,/w, while ¢, is different for the two
| ZmA(1/2) n+(1/2),p Hz,m+(1/2),n_(1/z),p] formulations. Then, Maxwell’s equations for TEvaves in a
B 2 nonconductive medium in polar coordinates are modified as
(Azp—1 + A7) 1 OH
1—(1/2) 1—(1/2) iwelb, =—— % (11a)
eyt (212 ~ Homt 2y mp—1/2)] P pey 9¢
1—(1/2) 1—(1/2) . 1 0H,
- pom+(1/2)n,p Jp,rn+(l/2),n,p' (9) 'LLUEqu = C— ap s (11b)
P
The other two componenis,, £. can be approximated in the ) 1 3(pEy) 1 JE,
same way. Note that although the nonuniform grid in Fig. 1 —iwpH, Z—ﬁ? 3p E 94 (11c)
has a variable cell siz@Ap,,, x A¢, x Az,) for the E field, r
the H field components are located exactly at the cell facghere g = p(p) is in general a complex function that

centers. Therefore, the discretization of (3)—(5) is exactly thigstinguishes the QPML and true PML formulations.
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A. PML Scheme Using Complex Coordinates (CPML) The other set of equations for updatidf can be obtained

by duality. The set of (15) are appropriate for time-stepping.
Compared with the formulations in [29], for nonconductive
media this system requires 12 instead of 16 field variables, sav-

Choosingey, = p/p,e, = a,(p) + iw,(p)/w, and the
complex radial coordinate

g g / . . N
5= / e,(p) dp = / [ap(p/) +i wp(p') dy' ing g_bout 33% computer memory. This scheme also provides
0 0 w additional degree of freedoifn, and 4,) for the PML.
— i Q,(p)
=Ap(p) +i =7 (12) 5 opML Scheme
we rewrite (11c) as Note that in the unified formula (11a)—(11c), if we choose
. E. 95 1 OFE 1 OF ey = ¢, = a,(p) +iw,(p)/w, and p(p) = p, we can rewrite
iwp[HY) + H?) = p%b a—Z - 8—; =3 a—(; (13) the 3-D updating equations fa field in time-domain for
r r conductive media as
where the split fieldd. = H” + H®. Then, (11a)~(11c) HE® t
can be cast in the following form: a,c a—; + (wpe + a,0)ES?) + w0 / E@(r) dr
. O[H + H 1 OH, B
(—iwA, +Q,)eE, = — a5 (14a) == %8 " I, (16a)
: oH" + B 2% . Yo
(—iwa, +wp)eby = — B Fa— (14b) az€ —, + (wee+ aza)Elg )+ w.o /_Oo Ef, (7 dr
. OF JdH
_, H = 724 14 — 9 4@
( LUJCLP + wP)I’L z ap ’ ( C) aZ Jp ) (16b)
oF (p) t
i (®) — _ 9Ep oF
(miwA, +Q)uH” = —E¢ + 96 (14d) ape aj + (wpe + a,,a)Eq(f’) + w0 / Eé”)(r) dr
Equations (14a)—(14d) can be easily transformed to time OH, »
domain. = "o —Jg7 (16c)

Based on this scheme, the set of time-domain equations for Py "
updating E field for conductive media in three-dimensional _ 845 + (wZCJraZa)E;Z) +w.o / Eéf)(v) dr
t

(3-D) cylindrical coordinates are —oo
9H, )
oE;” (4) R =% i (16d)
Ape 5 + Qe+ Ap0) B +Qp0 / By (r) dr oE z .
OH. o ape —— + (wpe + a,0)E. + w,o / E.(7)dr
=22 g, (15a) ot —oo
e ! 1 d(pHy) 1 9E,
aE(Z) ) t ) = - Tp - ; a—(/) J.. (16e)
ae 8; + (wee + aza)El(f) +w,o / El(f)(T) dr P
- Therefore, there are only ten field variables in the 3-D
_9Hy _ J) (15b) QPML formulation. Although it can be shown theoretically
Oz g that this PML is not perfectly matched (thus the naguast
aEé”) » ) PML) [27], practically it provides a satisfactory ABC with
4t "ot +(wpe + a,0) ES7 +wpo [m By (r) dr a 20% saving in computer memory and computation time
OH. » compared with the improved true PML (CPML) scheme.

C. Discretization of Time-Domain Equations

1
ae€ aj +(wze+aza)E§f) + w,o / Eif)(f) dr We adopt the modified Yee's algorithm in Section Il to
- discretize the above equations in a nonuniform grid. As an

- % - Jg’), (15d) example, (16a) in the time-stepping form becomes
Z
(r) t E(¢)(i jok.n+1)
£ 21y KM
apc 0 + (wpe + a,,a)Eé”) twpo / EX(r) dr ! . (@) (s - . (B) /0 -
at — 00 :fl(z?j7k)Ep (Z7J7k’n)+f2(zﬂj’k)ETp (Z?j?k?n)
— qug _ JZ(P)’ (159) +f3(L7/7 k)[Hz(Lvlvkvn) _Hz(Lvl_ 1,]6,71)]
e T 40,3, )T g k) a7)
JE; t
Ape 5 T (Qpe + A,0)EP) + Q0 [ EP(r)dr  \where
.. At — + 2
= qu — % ngb) (15f) fl('lz,], ]C) _ CLpC/ (G/PO— (A)pe)/ (186\)

op Pz ape/ At + (a,0 + wpe +w,oAt) /2
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—w,o At

P A 0.05
f2(i 3, F) ayc/At + (a,0 + wye +w,oAt) /2 (18b) b o Numgrical Error ,
S 2/(A¢j_1 + A¢j;) 0.04} |- - O(ap°) Convergence /
Jali g, k) = Pm1/2[0p¢/ A + (0,0 + wpe +w,0At) /2] )
(18¢c) 5 0.03 7
fali, 5, k) = __ At (18d) o 0.02¢ 7
whJ €+ oAt/2’ /o//
In (18), parameters, 4, o are all functions of space for an 0.01 y
inhomogeneous medium. Note that the time-integrated electric 4@990
field Ef,ﬁ) is located at the same position in the staggered 0o 001 002 003 004 005
grid as the electric fieIdEf,‘”. Moreover, terms involving ",

_E att :. (” + (1/2)).At and H att = nAt requ"e time Fig. 2. Error of the nonuniform cylindrical FDTD scheme as a function
interpolation (averaging) as they are not defined at theséhe1/N, showing theO(Ap?) convergence. The numbé¥, increases

discrete points. This averaging has the same accuracy asRReertionally with N,.

central time differencing, and therefore does not degrade the

overall accuracy in the time discretization. Similar expressioggcrease the numbeé¥, = N, i.e., we increase the average

can be derived for the other field components. cell size, from the reference model which has a very fine grid.
The QPML is not completely reflectionless. However, itgvithin a fixed time period, we calculated the global error

simplicity, less computer memory and computational time, angr each experiment with respect to the reference case. Fig. 2

reasonably small reflections make it attractive to many applicghows the error as a function ofN, which clearly confirms

tions. In comparison, the improved true PML is reflectionlesfe supraconvergence of second-order accuracy of the FDTD
in the continuous limit, but requires additional memory angcheme.

computation time. In practice, our results show little reflection
from both the true PML and QPML interfaces. B. A Conductive Sphere in a Nonconductive
Medium with QPML

This special case is to model a conductive sphere in a
We have implemented the FDTD algorithm with botmonconductive background medium with-alirected magnetic
ABC's for 2-D axisymmetric, 2-D polar, and 3-D cylindricaldipole ring sourcé f. = 100 MHz) at the center of the sphere.
problems. To minimize the reflection from the discretize@his is a 2-D axisymmetric case. The conductive sphere has
PML layers, we choose a quadratic profile for the PMha radius of 0.7 m withe, = 4,4, = 1, ando = 10~*
coordinate-stretching variables whose maximum values &@#m. Outside the sphere is a nonconductive medium with
denoted bya; max and wymax (7 = p,z) at the outer ¢, = 1,4, = 1, ande = 0. For the boundary condition, we
boundaries. Numerical results are shown below to demonstrate 10 cells of QPML ir direction and 20 cells ip direction.
the applications of the FDTD algorithm. In the followingThe size of the computational domainig, x N. = 80 x 140
examples, a magnetic or an electric dipole directed in:theand the nonuniform cell size (in meters) has the prafile,, =
direction is used as a source, and the field comporignts  0.0340.0005 m in p direction andAz, = 0.03+0.0005|p— 70|
measured at an array of receivers. The source time functioriris: direction. The source is located at the sphere center and at
the first derivative of the Blackman—Harris window functiortell (¢,,%.) = (0, 70), and the receiver is located at cell (0, 80).
with a center frequency of.. Unlike the previous ABC’s, Fig. 3 compares the QPML result with the analytical solution
the PML ABC's in this FDTD algorithm are stable even aftefor the receivedH . waveform. The small error shown in the

IV. NUMERICAL RESULTS

60000 time steps. inset is caused by three major sources: the PML reflection, the
staircasing error of the sphere model, and the approximation
A. Order of Accuracy of the small ring source by a point source in the analytical

It has been demonstrated [33], [34] that the nonuniforﬁ‘PIUt'on'
Cartesian grid FDTD is locally first-order accurate, but glob- ) ,
ally second-order accurate (known sspraconvergengeAl- C: A Polar Case in Free Space with QPML and CPML
though the analysis in [33] and [34] cannot be easily appliedIn this case, we simulate a line magnetic current source
to cylindrical coordinates, we can numerically show the ordéd. in free space with a center frequengdy = 300 MHz.
of accuracy in the nonuniform cylindrical FDTD scheme. Wéhis is a 2-D polar problem (TEwaves). The line source
design an experiment for testing the error as a function of tie located at the cel(i,,iy) = (15,64) in a cylindrical
cell size (Ap, A¢) in polar coordinates for a homogeneousiomain of NV, x N, = 80 x 256 cells (pmax = 3.2 m)
medium with perfect electric conductor as the outer boundaigcluding 10 PML cells in the radial direction. Fig. 4 shows
We fix locations of the source and receiver as well as tlilee excellent agreement between analytical solution and the
physical size of the computation region. The computationalmerical results of the QPML and CPML schemes for a
region is discretized by a grid a¥, x N,, (where N, = N,) receiver at cell (20, 72). The reflection is about 1.1% and
cells with a random distribution ahp and A¢. We gradually 0.91% for QPML and CPML, respectively. Note that for a fair
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0.4 v 0.015
— Analytical oooa=t
0.2 — - QPML 0.01 - - a=21
Iy — a=3
g o N 0.005 A - a=4}
©-02 3 o y
= 0.02 g
E -0.4 o =
S g 0 @ -0.005
Z_06 w
-0.02 -0.01
-0.8 0 50 100
_q . -0.015 : -
0 20 40 60 80 100 0 O.'|§ ! .
Time (ns) imes (s) x 10
Fig. 3. TheH. component at a receiver near a conductive sphere (radius @
0.7 m,e, =4, =1, ande = 10~* S/m) in a nonconductive background
medium (e, = 1,4, = 1, ando = 0). A small magnetic ring source is -60
located at the center of the sphere. The inset shows the difference between a=1
the numerical and analytical results. _apl - - a=2
80 — a-3
— — a=4
1 T -100
<]
— Exact 5
05 - - QPML -120
N - CPML
T
E _____ ~140} N
= 4] t= Sl
£ 0.02 0 1 2 3
z 0.01 PRI Frequency (Hz) x10°
-0.5 o—==— <
Sl b
-0.01 ®)
_q . 15 , 20 Fig. 5. Reflected fields for, max = 1,2,3, and4 in an axisymmetric
0 5 10 15 20 problem. (a) Time-domain reflected fieF . (b) Spectral amplitude of the
Time (ns) reflected field normalized by the peak spectral amplitude of the incident field.

Fig. 4. Comparison between analytical and numerical results for the QPML . . . . .
and true CPML schemes for a free space in polar coordinates. The comgﬂ'-d* respectively. The difference of these two fields gives

tational domain isN,, x N, = 80 x 256. The line source is located at the the reflected field from the boundary. Fig. 5(a) and (b) show
cell (jp.js) = (15,64). the reflected waveforms and their spectral amplitudes for four
different values ofa, m.x = 1, 2, 3, and 4. Corresponding
comparison, we have chosep = 1 in the QPML case even [0 the reerctedeavefprmﬂf in Fig. 5(a), theL., errors
though the code allows a profile far,. As discussed below, Ee = max{|H(#;)|.j = 0,---N;} are 0.0140, 0.006 94,
this reflection can be reduced substantially by adjustipgt ~0-006 35, and 0.007 21, respectively; while feerrors£, =
is worthwhile to point out that, as the radius of the truncating/zf;to |HE(t;)|? are 0.1685, 0.0989, 0.0816, and 0.0774,
boundary increases, the difference between the QPML aspectively. As it is preferable to choose the value 0f,.x

CPML diminishes [27]. which gives the smallest, error, the value ofi, ,.x = 3 is
more desirable, even though it has a slightly largererror

D. Effect ofa, in the QPML ABC than a, ma.x = 4. The spectral amplitude in Fig. 5(b) shows
In the above examples, we observe that in cylindricdfat the reduction in the reflected field faf, yax > 1is

coordinates, there is some small reflection in theirection Proadband.

from the boundary, and this reflection increases with the o )

incidence angle. We found that the reflection can be reduded AN Application of the Nonuniform

by the appropriate choice of PML parametersanda,. We ~CYlindrical FDTD Method

first choose an optimal,, then adjustu, to achieve further ~We model a 3-D case to illustrate the application of the

reduction to the reflection. Here, we show the effectsipf nonuniform cylindrical FDTD using PML ABC's. Fig. 6(a)

on the reflected field. shows therz cross section of a 3-D borehole radar detection
To quantify the QPML reflection, we simulate two axisymproblem with vertical and horizontal fractures. The background

metric problems with grid size®/, x N, = 290 x 140 and medium is conductive with,. = 2,5, = 1, ando = 0.001

N, x N. = 80 x 140. The source(f, = 100 MHz) and S/m. The centered borehole has a radius of 16 cmeand

the receiver are located at (0, 30) and (59, 40), respectivelyu,. = 1, ando = 0.01 S/m. The horizontal fracture has a

In the geometry of the smaller grid, the incident angle ithickness of 3 cm withe, = 8,4, = 1, ando = 0.1 S/m.

approximately 10 at the receiver location. The incident andA vertical fracture is located about 1.73 m away from the

total fields are obtained from the larger grid and the smallborehole axis. It has a thickness of 3 cm and spang;9p
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50

45

40

e = ——
5
0
0 1 3 ; 5
Time {s) x 107"
(@) Fig. 7. Waveforms of the scattered field from the two fractures in Fig. 6.

The field is normalized by one-fifth of the maximum peak value.

field is dominated by that from this fracture. As a result the
scattered field waveforms show a symmetric pattern centered
at the location of the horizontal fracture. The scattering due
to the vertical fracture can be obtained by subtracting the
contribution of the horizontal fracture from the total scattered
field. Quantitative analysis shows that the vertical fracture
contributes only about 1/60 of the scattered field in Fig. 7.

y(m)

V. CONCLUSIONS

We have developed an FDTD algorithm with a nonuniform
cylindrical grid. The QPML and improved true PML absorbing

E boundary conditions are extended to a nonuniform grid. The
> FDTD algorithm with PML ABC's is validated by analytical

—05 solutions to canonical problems. Unlike the previous ABC's,

the PML absorbing boundary conditions have long-time sta-

o SN oy T bility even when an oblique interface intersects the truncating

boundary. This algorithm with a nonuniform cylindrical grid
© is more flexible for problems with varying scales of geometry

Fig. 6. Detection of horizontal and vertical fractures by a borehole radar {hd can greatly save computer memory and computation time.
a borehole radius 16 cm. The thickness of fractures is 3 cm. (ajc¥teoss

section. (b) Thery cross section. (c) Part of the magnified cells in (b) around N€ QPML a!gorithm_ requires less computer memory and
the vertical fracture. computation time, while the true PML gives slightly smaller

reflections.

direction, and has the same, 11,.,, and ¢ as the horizontal
fracture. Fig. 6(b) shows they cross section which is further ACKNOWLEDGMENT
magnified in Fig. 6(c) to show the grid around the vertical The authors would like to thank W. C. Chew for some useful
fracture. A magnetic dipole point source is located along thliscussions, and the reviewers for their constructive criticisms
borehole axis and is 3.8 m from the bottom boundary, and improve the quality of the manuscript.
an array of receivers is also located along the borehole axis.
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