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Abstract—Many applications require time-domain solutions
of Maxwell’s equations in inhomogeneous, conductive media
involving cylindrical geometries with both electrically small and
large structures. The conventional finite-difference time-domain
(FDTD) method with a uniform Cartesian grid will result in a
staircasing error, and wastes many unnecessary cells in regions
with large structures in order to accommodate the accurate
geometrical representation in regions with small structures. In
this work, an explicit FDTD method with a nonuniform cylin-
drical grid is developed for time-domain Maxwell’s equations. A
refined lattice is used near sharp edges and within fine geomet-
rical details, while a larger lattice is used outside these regions.
This provides an efficient use of limited computer memory and
computation time. We use two absorbing boundary conditions
to a nonuniform cylindrical grid: 1) the straightforward ex-
tension of Berenger’s perfectly matched layer (PML) which is
no longer perfectly matched for cylindrical interfaces, thus the
name quasi-PML (QPML); 2) the improved true PML based on
complex coordinates. In practice, both PML schemes can provide
a satisfactory absorbing boundary condition. Numerical results
are shown to compare the two absorbing boundary conditions
(ABC’s) and to demonstrate the effectiveness of the nonuniform
grid and the absorbing boundary conditions.

Index Terms—Absorbing boundary conditions, cylindrical co-
ordinates, FDTD, nonuniform grid, numerical analysis, PML.

I. INTRODUCTION

SIMULATIONS of transient electromagnetic waves in con-
ductive (lossy) media have many applications such as

medical imaging, nondestructive evaluation, and geophysi-
cal subsurface sensing. Finite-difference time-domain (FDTD)
methods are widely applied to simulate transient electro-
magnetic wave propagation [1]–[4]. The predominant FDTD
algorithms discretize the continuous space with a uniform
Cartesian grid. In many applications, however, we have to con-
front the cylindrical structures such as in optical fiber commu-
nications, integrated optics, defense industry, and geophysical
exploration [5], [6]. Moreover, the geometry of interest may
consist of both electrically large- and small-scale structures.
If we adopt the conventional FDTD method to discretize
the cylindrical structure with a uniform Cartesian grid, a
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significant staircasing error appears. Furthermore, the cell size
has to be small enough for all regions in order to accommodate
the small-scale structures, wasting much computer memory
and computation time. The aim of this work is to develop
an FDTD algorithm with a nonuniform cylindrical grid to
discretize the computational domain. Small cells are used in
regions with fine details, while larger cells are used in other
regions. A gradual transition is used between large and small
cells.

To simulate wave propagation and scattering in an un-
bounded medium, absorbing boundary conditions (ABC’s)
have to be used to absorb outgoing waves. Many researchers,
for examples Liao [7], Lindman [8], Engquist and Majda [9],
Bayliss and Turkel [10], and Ramahi [11], have contributed to
ABC’s. However, these ABC’s cannot be used for problems
with oblique interfaces intersecting the outer boundary. Re-
cently, Berenger [12], [13] introduced the perfectly matched
layer (PML), which provides highly effective absorption to
the outgoing waves. Chew and Weedon [14] have used the
stretched coordinates to formulate the PML ABC. Katzet
al. [15] have also validated and extended this ABC to three
dimensions. Liu [16] adopts a more general stretching coordi-
nates originally developed by Chew and Liu for elastic waves
[17]–[19] to conductive media. The extension of PML to con-
ductive media was also presented in [20] and [21]. Fang and
Wu present a slightly different formulation for two dimensions
[22]. Although quasi-PML (QPML) ABC formulations have
been studied for nonorthogonal grids [23]–[25], only recently
rigorous studies have been done on the PML for cylindrical
coordinates [26]–[30].

In this work, the QPML is first formulated for cylindrical
coordinates with a nonuniform grid. Although it can be shown
that QPML does not give a perfect absorption [27], practically
we are able to make the reflection from the QPML ABC
small enough. Recently, Chewet al. have proposed a complex
coordinate system for the development of a true PML ABC
for cylindrical and spherical coordinates [28]. A FDTD method
is developed for two-dimensional (2-D) polar coordinates in
[29]. We improve the true PML in [28] and [29] to make
it more efficient both for two and three dimensions. The
concept of complex coordinates has also been used for deriving
anisotropic PML [31] and for more general grid termination
[32].

We first introduce in Section II a nonuniform grid in cylin-
drical coordinates. QPML and improved true PML ABC’s in
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a nonuniform grid are developed in Section III. Finally, we
validate the algorithm with analytical solutions and show some
applications of the nonuniform cylindrical FDTD programs in
Section IV.

II. FDTD FOR A NONUNIFORM CYLINDRICAL GRID

Consider an isotropic, inhomogeneous medium with space
dependent electric permittivity magnetic permeability

and conductivity Faraday’s and Ampere’s laws
in Maxwell’s equations are stated by

(1)

(2)

where and are the imposed electric and magnetic current
densities, respectively. The introduction of magnetic source
is convenient for modeling small loop and aperture antennas,
which can be approximated as magnetic dipoles.

The FDTD solution of Maxwell’s equations requires the
discretization of (1) and (2). In cylindrical coordinates, (1)
and (2) can be rewritten as

(3)

(4)

(5)

(6)

(7)

(8)

As shown in Fig. 1, if we discretize the continuous space
by a nonuniform cylindrical Yee grid with a variable cell size

the spatial derivatives of have to
be modified from those in a uniform grid. For example, the
discretized form of (6) in a nonuniform grid can be derived as

(9)

The other two components can be approximated in the
same way. Note that although the nonuniform grid in Fig. 1
has a variable cell size for the field,
the field components are located exactly at the cell face
centers. Therefore, the discretization of (3)–(5) is exactly the

Fig. 1. A unit cell��m ���m ��zp of the nonuniform cylindrical Yee
grid. TheEEE components are located at the edge centers between cells of
variable sizes, while theHHH components are located exactly at the face centers
in each cell. As a result, the FD approximated derivatives ofEEE components at
the face centers(HHH locations) are locally second-order accurate, while the FD
approximated derivatives ofHHH components at the edge centers(EEE locations)
are locally first-order accurate.

same as that in a uniform FDTD grid. For example, (3) can
be discretized as

(10)

In the above equations, the time discretization is the same as
in a uniform FDTD scheme.

III. QUASI-PML AND IMPROVED TRUE PML

Since the formulation of PML in direction in cylindrical
coordinates is the same as that in Cartesian coordinates,
for simplicity, we first consider Maxwell’s equations in 2-
D polar coordinates for the TEcase. The formulation for
the TM case can be easily derived by using duality. Here
we adopt the concept of complex coordinates in [28] to
present two PML formulations for polar coordinates. We use
the complex coordinate stretching variablesand such
that In
general, while is different for the two
formulations. Then, Maxwell’s equations for TEwaves in a
nonconductive medium in polar coordinates are modified as

(11a)

(11b)

(11c)

where is in general a complex function that
distinguishes the QPML and true PML formulations.
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A. PML Scheme Using Complex Coordinates (CPML)

Choosing and the
complex radial coordinate

(12)

we rewrite (11c) as

(13)

where the split field Then, (11a)–(11c)
can be cast in the following form:

(14a)

(14b)

(14c)

(14d)

Equations (14a)–(14d) can be easily transformed to time
domain.

Based on this scheme, the set of time-domain equations for
updating field for conductive media in three-dimensional
(3-D) cylindrical coordinates are

(15a)

(15b)

(15c)

(15d)

(15e)

(15f)

The other set of equations for updating can be obtained
by duality. The set of (15) are appropriate for time-stepping.
Compared with the formulations in [29], for nonconductive
media this system requires 12 instead of 16 field variables, sav-
ing about 33% computer memory. This scheme also provides
additional degree of freedom and for the PML.

B. QPML Scheme

Note that in the unified formula (11a)–(11c), if we choose
and we can rewrite

the 3-D updating equations for field in time-domain for
conductive media as

(16a)

(16b)

(16c)

(16d)

(16e)

Therefore, there are only ten field variables in the 3-D
QPML formulation. Although it can be shown theoretically
that this PML is not perfectly matched (thus the namequasi-
PML) [27], practically it provides a satisfactory ABC with
a 20% saving in computer memory and computation time
compared with the improved true PML (CPML) scheme.

C. Discretization of Time-Domain Equations

We adopt the modified Yee’s algorithm in Section II to
discretize the above equations in a nonuniform grid. As an
example, (16a) in the time-stepping form becomes

(17)

where

(18a)
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(18b)

(18c)

(18d)

In (18), parameters are all functions of space for an
inhomogeneous medium. Note that the time-integrated electric
field is located at the same position in the staggered

grid as the electric field Moreover, terms involving
at and at require time

interpolation (averaging) as they are not defined at these
discrete points. This averaging has the same accuracy as the
central time differencing, and therefore does not degrade the
overall accuracy in the time discretization. Similar expressions
can be derived for the other field components.

The QPML is not completely reflectionless. However, its
simplicity, less computer memory and computational time, and
reasonably small reflections make it attractive to many applica-
tions. In comparison, the improved true PML is reflectionless
in the continuous limit, but requires additional memory and
computation time. In practice, our results show little reflection
from both the true PML and QPML interfaces.

IV. NUMERICAL RESULTS

We have implemented the FDTD algorithm with both
ABC’s for 2-D axisymmetric, 2-D polar, and 3-D cylindrical
problems. To minimize the reflection from the discretized
PML layers, we choose a quadratic profile for the PML
coordinate-stretching variables whose maximum values are
denoted by and at the outer
boundaries. Numerical results are shown below to demonstrate
the applications of the FDTD algorithm. In the following
examples, a magnetic or an electric dipole directed in the
direction is used as a source, and the field componentis
measured at an array of receivers. The source time function is
the first derivative of the Blackman–Harris window function
with a center frequency of Unlike the previous ABC’s,
the PML ABC’s in this FDTD algorithm are stable even after
60 000 time steps.

A. Order of Accuracy

It has been demonstrated [33], [34] that the nonuniform
Cartesian grid FDTD is locally first-order accurate, but glob-
ally second-order accurate (known assupraconvergence). Al-
though the analysis in [33] and [34] cannot be easily applied
to cylindrical coordinates, we can numerically show the order
of accuracy in the nonuniform cylindrical FDTD scheme. We
design an experiment for testing the error as a function of the
cell size in polar coordinates for a homogeneous
medium with perfect electric conductor as the outer boundary.
We fix locations of the source and receiver as well as the
physical size of the computation region. The computational
region is discretized by a grid of (where
cells with a random distribution of and We gradually

Fig. 2. Error of the nonuniform cylindrical FDTD scheme as a function
of the 1=N� showing theO(��2) convergence. The numberN� increases
proportionally withN�:

decrease the number i.e., we increase the average
cell size, from the reference model which has a very fine grid.
Within a fixed time period, we calculated the global error
for each experiment with respect to the reference case. Fig. 2
shows the error as a function of which clearly confirms
the supraconvergence of second-order accuracy of the FDTD
scheme.

B. A Conductive Sphere in a Nonconductive
Medium with QPML

This special case is to model a conductive sphere in a
nonconductive background medium with a-directed magnetic
dipole ring source MHz) at the center of the sphere.
This is a 2-D axisymmetric case. The conductive sphere has
a radius of 0.7 m with and
S/m. Outside the sphere is a nonconductive medium with

and For the boundary condition, we
use 10 cells of QPML in direction and 20 cells in direction.
The size of the computational domain is
and the nonuniform cell size (in meters) has the profile

in direction and
in direction. The source is located at the sphere center and at
cell and the receiver is located at cell (0, 80).
Fig. 3 compares the QPML result with the analytical solution
for the received waveform. The small error shown in the
inset is caused by three major sources: the PML reflection, the
staircasing error of the sphere model, and the approximation
of the small ring source by a point source in the analytical
solution.

C. A Polar Case in Free Space with QPML and CPML

In this case, we simulate a line magnetic current source
in free space with a center frequency MHz.

This is a 2-D polar problem (TEwaves). The line source
is located at the cell in a cylindrical
domain of cells m)
including 10 PML cells in the radial direction. Fig. 4 shows
the excellent agreement between analytical solution and the
numerical results of the QPML and CPML schemes for a
receiver at cell (20, 72). The reflection is about 1.1% and
0.91% for QPML and CPML, respectively. Note that for a fair
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Fig. 3. TheHz component at a receiver near a conductive sphere (radius
0.7 m,�r = 4; �r = 1; and� = 10�4 S/m) in a nonconductive background
medium (�r = 1; �r = 1; and � = 0): A small magnetic ring source is
located at the center of the sphere. The inset shows the difference between
the numerical and analytical results.

Fig. 4. Comparison between analytical and numerical results for the QPML
and true CPML schemes for a free space in polar coordinates. The compu-
tational domain isN� �N� = 80� 256: The line source is located at the
cell (j�; j�) = (15;64):

comparison, we have chosen in the QPML case even
though the code allows a profile for As discussed below,
this reflection can be reduced substantially by adjustingIt
is worthwhile to point out that, as the radius of the truncating
boundary increases, the difference between the QPML and
CPML diminishes [27].

D. Effect of in the QPML ABC

In the above examples, we observe that in cylindrical
coordinates, there is some small reflection in thedirection
from the boundary, and this reflection increases with the
incidence angle. We found that the reflection can be reduced
by the appropriate choice of PML parametersand We
first choose an optimal then adjust to achieve further
reduction to the reflection. Here, we show the effects of
on the reflected field.

To quantify the QPML reflection, we simulate two axisym-
metric problems with grid sizes and

The source MHz) and
the receiver are located at (0, 30) and (59, 40), respectively.
In the geometry of the smaller grid, the incident angle is
approximately 10 at the receiver location. The incident and
total fields are obtained from the larger grid and the smaller

(a)

(b)

Fig. 5. Reflected fields fora�;max = 1; 2; 3; and 4 in an axisymmetric
problem. (a) Time-domain reflected fieldHR

z : (b) Spectral amplitude of the
reflected field normalized by the peak spectral amplitude of the incident field.

grid, respectively. The difference of these two fields gives
the reflected field from the boundary. Fig. 5(a) and (b) show
the reflected waveforms and their spectral amplitudes for four
different values of 2, 3, and 4. Corresponding
to the reflected waveforms in Fig. 5(a), the errors

are 0.0140, 0.006 94,
0.006 35, and 0.007 21, respectively; while theerrors

are 0.1685, 0.0989, 0.0816, and 0.0774,
respectively. As it is preferable to choose the value of
which gives the smallest error, the value of is
more desirable, even though it has a slightly largererror
than The spectral amplitude in Fig. 5(b) shows
that the reduction in the reflected field for is
broadband.

E. An Application of the Nonuniform
Cylindrical FDTD Method

We model a 3-D case to illustrate the application of the
nonuniform cylindrical FDTD using PML ABC’s. Fig. 6(a)
shows the cross section of a 3-D borehole radar detection
problem with vertical and horizontal fractures. The background
medium is conductive with and
S/m. The centered borehole has a radius of 16 cm and

and S/m. The horizontal fracture has a
thickness of 3 cm with and S/m.
A vertical fracture is located about 1.73 m away from the
borehole axis. It has a thickness of 3 cm and spans 9in
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(a)

(b)

(c)

Fig. 6. Detection of horizontal and vertical fractures by a borehole radar in
a borehole radius 16 cm. The thickness of fractures is 3 cm. (a) Thexz cross
section. (b) Thexy cross section. (c) Part of the magnified cells in (b) around
the vertical fracture.

direction, and has the same and as the horizontal
fracture. Fig. 6(b) shows the cross section which is further
magnified in Fig. 6(c) to show the grid around the vertical
fracture. A magnetic dipole point source is located along the
borehole axis and is 3.8 m from the bottom boundary, and
an array of receivers is also located along the borehole axis.
If this problem were to be simulated by a uniform FDTD
code, a grid about should
have been used in order to accommodate the small fractures
in different directions. Here, we adopt a nonuniform grid with

saving about 45 times CPU
and memory.

The scattered field due to both fractures is shown in Fig. 7.
Because the horizontal fracture is much larger, the scattered

Fig. 7. Waveforms of the scattered field from the two fractures in Fig. 6.
The field is normalized by one-fifth of the maximum peak value.

field is dominated by that from this fracture. As a result the
scattered field waveforms show a symmetric pattern centered
at the location of the horizontal fracture. The scattering due
to the vertical fracture can be obtained by subtracting the
contribution of the horizontal fracture from the total scattered
field. Quantitative analysis shows that the vertical fracture
contributes only about 1/60 of the scattered field in Fig. 7.

V. CONCLUSIONS

We have developed an FDTD algorithm with a nonuniform
cylindrical grid. The QPML and improved true PML absorbing
boundary conditions are extended to a nonuniform grid. The
FDTD algorithm with PML ABC’s is validated by analytical
solutions to canonical problems. Unlike the previous ABC’s,
the PML absorbing boundary conditions have long-time sta-
bility even when an oblique interface intersects the truncating
boundary. This algorithm with a nonuniform cylindrical grid
is more flexible for problems with varying scales of geometry
and can greatly save computer memory and computation time.
The QPML algorithm requires less computer memory and
computation time, while the true PML gives slightly smaller
reflections.
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