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Iterative algorithm for nonuniform inverse
fast Fourier transform (NU-IFFT)

Qing Huo Liu and Xue Yuan Tang

A nonuniform inverse fast Fourier transform (NU-IFFT) for
nonuniformly sampled data is realised by combining the
conjugate-gradient fast Fourier transform (CG-FFT) method with
the newly developed nonuniform fast Fourier transform
(NUFFT) algorithms. An example application of the algorithm in
computational electromagnetics is presented.

Introduction: The fast Fourier transform (FFT) [1] is one of the
most important algorithms in computational science and engineer-
ing. However, regular FFT algorithms are not suitable in many
practical applications when the data are not uniformly sampled.
Three different algorithms have been developed for the nonuni-
form fast Fourier transform (NUFFT) [2 — 4] which, for nonuni-
form #, € [-N/2, Ni2] and o, € [-7, m], can evaluate the following
summations for j = -N/2, ..., Ni2 — 1:
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with O(mNlog,N) arithmetic operations (m is the oversampling
rate). For convenience, we refer to the NUFFT algorithms in [4]
for eqns. 1 and 2 as the NUFFT-1 and NUFFT-2 algorithms,
respectively, for the nonuniformly spaced temporal points and fre-
quency points.

For regular, uniformly sampled data where both {7} and {w;}
are uniform, the inverse FFT (IFFT) can share the same algo-
rithm as the FFT simply because 4! = A"/N and B! = BY/N in
these special cases (where superscript T denotes the complex conju-
gate and transpose of a matrix). Unfortunately, this is no longer
true for matrices 4 and B for nonuniformly sampled data. Hence,
the nonuniform inverse FFT (NU-IFFT) can no longer share the
same algorithm as the NUFFT. Obviously, the direct inversion of
eqn. 1 and eqn. 2 to obtain o, and B, is prohibitively expensive
since it requires O(N?) arithmetic operations. In this work, we use
the conjugate-gradient and regular FFT (CG-FFT) method
together with the NUFFT algorithms to develop an accurate NU-
IFFT algorithm.

Formulation: We first rewrite eqn. 1 using matrix notation f = Ao
From elementary matrix identities we observe that A = A'(4A4")".

Therefore the inverse DFT solution of eqn. 1 is
a=Ath 3)
h=(AA)Tf

The advantage of rewriting the solution in the form of eqn. 3 is

Nj2-1
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Observe that there are only N independent elements in array a
since a; = (a)". Furthermore, these N elements in eqn. 4 can be
obtained by the NUFFT-1 algorithm
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(5)

where d, = exp(int,), with O(mNlog,N) arithmetic operations.

Since AA' is a Toeplitz matrix, the vector 4 in eqn. 3 can be
obtained efficiently using the conjugate-gradient FFT (CG-FFT)
method (see [5], for example). In the CG-FFT method, the solu-
tion of % in eqn. 3 is obtained iteratively. Each iteration involves
operations such as y = (44)x which can be written as a discrete
convolution:

v =Y aj_ o = {FFT{FFT(a)FFT(x,)]}; (6)
1

and has been calculated by the regular FFT algorithm through the
convolution theorem. Note that in eqn. 6, the size of the FFTs is
2N, and x, is the array x padded with N zeros. After / is solved by
the above CG-FFT method, we can obtain ¢ from eqn. 3 by

#
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which can be achieved by the NUFFT-2 algorithm.

In summary, the procedures for the NU-IFFT algorithm for
eqn. 1 are:

(i) Preprocessing: to use the NUFFT-1 for array {a;} through eqn.
5, and to use the FFT algorithm to find [FFT(a))

(1) Inversion: to use the CG-FFT method to find a solution for 4
ineqn. 3

(iii) Transposition: to apply the NUFFT-2 to the transposed prob-
lem in eqn. 7.

In these procedures, since NUFFT-1 and NUFFT-2 require
O(mNlog,N) arithmetic ‘operations, the most expensive step is the
CG-FFT solution. It requires O(KNlog,N) arithmetic operations,
where the number of iterations K in the CG method is propor-
tional to the condition number of 4A4f. In most applications, X is
rather small as the points {#,} are fairly uniformly spaced. A simi-
lar algorithm has been developed for the NU-IFFT of eqn. 2.

Numerical results: We first compare the algorithm in [2] and our
algorithm with cosine accuracy factors, and N = 64, m = 2, and ¢
= 8. The input frequency-domain data f; and the locations of the
temporal sample points are both obtained by a pseudorandom
number generator with a large variation. The absolute errors in
our NU-IFFT algorithm are almost an order of magnitude smaller
than those in the algorithm in [2], as shown in Fig. 1. Quantita-
tively, the L, and L, errors are E, = 1.64 x 105, E_ = 7.17 x 10~
in our NU-IFFT algorithm, and E, = 1.26 x 10, E_ = 4.81 x 10-¢
using the algorithm in [2].
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Fig. 1 Comparison of absolute error in NU-IFFT result with that in [2]
Jor random input array

Direct result is oy, = (1 + d[r(k) — 0.5] at 1, = k + r(k)/2, where r(k) is
random number with uniform distribution in [0, 1]

clear because matrix A4" is a Toeplitz matrix [2], i.e. (44", = a._, —-—--D-R
where NU-IFFT
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As an example of applications, the NU-IFFT algorithm is used
to reconstruct the spatial electric field distribution near a high-
contrast dielectric slab located between x = —1.5 and x = 1.5m.
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Fig. 2 Reconstruction of imaginary part of spatial field distribution and
exact solution near a dielectric slab over —1.5 < x < 1.5m

The real part has a similar accuracy. The sample points for —2.4268
< x £2.3810m are twice as dense as the rest of the domain

exact

— —— - NU-IFFT

The dielectric constant of the slab is €, = 16, and the background
medium is conductive with €, = 1 and ¢ = 0.00155/m. A planar
electric current source J, is located at x = —1.548m and excites
waves at 100 MHz. By re-sampling the analytically calculated spa-
tial spectrum of the electric field E (k,), we use the NU-IFFT
algorithm (N = 562, m = 2, ¢ = 8) to reconstruct the spatial field
distribution over a set of nonuniform spatial points {x,}. For sim-
plicity, the distribution of these {x,} points is chosen such that the
sampling rate near and inside the slab (where high-frequency oscil-
lations exist) is twice that away from the slab. As shown in Fig. 2,
the NU-IFFT reconstructed field distribution has an excellent
agreement with the exact solution. The maximum relative error in
the reconstruction is 0.66%, and the number of CG itérations is K
=28,

Conclusions: Using the CG-FFT method and the NUFFT algo-
rithms based on the regular Fourier matrices, we develop an
inverse fast Fourier transform (NU-IFFT) algorithm for nonuni-
formly spaced data. With a comparable complexity of O(KN-
log,N) (where K is the number of CG iterations), our NU-IFFT
algorithm is more accurate than the previously reported results.
An example in the field reconstruction near a high-contrast dielec-
tric slab is shown to demonstrate the application of the NU-IFFT
algorithm. .
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Long term fading in direct sequence spread
spectrum in microcellular environments

M.P. Fitton, M.A. Beach and A.R. Nix

The shadowing (or long term) statistics of a wireless system have
a large impact on overall performance. The authors show
experimentally that the inherent path diversity of a direct
sequence spread spectrum system will reduce the effect of long-
term envelope variation due to shadowing. This will result in a
network with more homogeneous quality-of-service, reduce
handovers, and improve capacity.

Introduction. Direct sequence code division multiple access (DS-
CDMA) techniques are widely employed for a variety of wireless
communications [1]. The advantages include robust multiple
access and the provision of path diversity, for example through
the use of a RAKE receiver {2]. The propagation aspects of
employing a large transmission bandwidth are manifold, and
include increased path diversity [2] and the mitigation of power
control errors [3].

It has been demonstrated that, as the spreading bandwidth
increases, the fast fading characteristic of each diversity path
becomes more deterministic [2]. However, in this Letter it is illus-
trated that the long term (shadowing) characteristic will also
become more deterministic when employing a large spreading
bandwidth and path diversity. In this analysis, a real microcellular
environmerit was rigorously characterised [4], including deeply
shadowed and street-corner regions.

The importance of shadowing (or long-term fading) is far reach-
ing and well understood [3]. The effects of buildings, hills, vegeta-
tion and other obstructions surrounding the transmitter and
receiver can cause large envelope variations over distances of sev-
eral metres. In a ricrocellular environment, it is likely that a
number of paths arriving at the receiver will possess largely inde-
pendent shadowing. This arises as propagation is largely confined
to street-canyons [3], resulting in significant angular spread of
multipath components, and low correlation, as shown later.

In a narrowband system, the composite long-term fading that is
observed will result from a vector summation of all significant
multipath components arriving at the receiver. In the case of DS-
spread spectrum (DS-SS), the multipath components can be
resolved to a certain extent through path diversity, with each time
bin displaying largely independent shadowing. The composite
long-term fading will result from a coherent addition of co-phased
path diversity bins in the receiver. The summation of a large
number of co-phased shadowing components will display less var-
iation than the narrowband case, following the central limit theo-
rem. The improvement in shadowing will depend on the chantel
profile, time resolution and path diversity order.
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Fig. 1 Shadowinyg statistics for various spreading bandwidths
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Propagation measurements: In a deeply shadowed region, the
receiver has no line-of-sight path, and no large variations in- sur-
rounding obstructions occur. The narrowband shadowing stand-
ard deviation is 3.6dB, which agrees with previous research [5].
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