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Iterative algorithm for nonuniform inverse 
fast Fourier transform (NU-IFFT) 

Qing Huo Liu and Xue Yuan Tang 

A nonuniform inverse fast Fourier transform (NU-IFFT) for 
nonuniformly sampled data is realised by combining the 
conjugate-gradient fast Fourier transform (CG-FFT) method with 
the newly developed nonuniform fast Fourier transform 
(NUFFT) algorithms. An example application of the algorithm in 
computational electromagnetics is presented. 

Introduction: The fast Fourier transform (FFT) [l] is one of the 
most important algorithms in computational science and engineer- 
ing. However, regular FFT algorithms are not suitable in many 
practical applications when the data are not uniformly sampled. 
Three different algorithms have been developed for the nonuni- 
form fast Fourier transform (NUFFT) [2 - 41 which, for nonuni- 
form tk E [-N/2, Ni2] and CO, E [-x, x], can evaluate the following 
summations f o r j  = -N/2, ..., Ni2 - 1: 

N / 2 - 1  NI2--1 

N/2-1 N/2--1 

g1 = 1 PlceLkW3 PkBJk (2) 
k=-N/2 k = - N / 2  

with O(mMog,N) arithmetic operations (m is the oversampling 
rate). For convenience, we refer to the NUFFT algorithms in [4] 
for eqns. 1 and 2 as the NUFFT-1 and NUFFT-2 algorithms, 
respectively, for the nonuniformly spaced temporal points and fre- 
quency points. 

For regular, uniformly sampled data where both { tk }  and { w,} 
are uniform, the inverse FFT (IFFT) can share the same algo- 
rithm as the FFT simply because A-’ = At/N and B1 = DIN in 
these special cases (where superscript t denotes the complex conju- 
gate and transpose of a matrix). Unfortunately, this is no longer 
true for matrices A and B for nonuniformly sampled data. Hence, 
the nonuniform inverse FFT (NU-IFFT) can no longer share the 
same algorithm as the NUFFT. Obviously, the direct inversion of 
eqn. 1 and eqn. 2 to obtain a, and p, is prohibitively expensive 
since it requires O(W) arithmetic operations. In this work, we use 
the conjugate-gradient and regular FFT (CG-FFT) method 
together with the NUFFT algorithms to develop an accurate NU- 
IFFT algorithm. 

Formulation: We first rewrite eqn. 1 using matrix notation f = Aa. 
From elementary matrix identities we observe that A-’ = At(AA+)-l. 
Therefore the inverse DFT solution of eqn. 1 is 

Q = Ath 
( 3 )  

h = (AA+)-lf 

The advantage of rewriting the solution in the form of eqn. 3 is 
clear because matrix AA+ is a Toeplitz matrix [2], i.e. (AN),, = U,-,, 

where 

k = - N / 2  

Observe that there are only N independent elements in array a 
since a,  = (a,>.. Furthermore, these N elements in eqn. 4 can be 
obtained by the NUFFT-1 algorithm 

N/2-1 

k= - AV/ 2 

(5) 

where dk = exp(irct,), with O(mNlog,N) arithmetic operations. 
Since AA7 is a Toeplitz matrix, the vector h in eqn. 3 can be 

obtained efficiently using the conjugate-gradient FFT (CG-FFT) 
method (see [5], for example). In the CG-FFT method, the solu- 
tion of h in eqn. 3 is obtained iteratively. Each iteration involves 
operations such as y = (AAt)x which can be written as a discrete 
convolution: 

vj = caJ-i ‘51 = ( F F T - l [ F F T ( a ) F F T ( ~ ~ ) ] } ,  (6) 
1 

and has been calculated by the regular FFT algorithm through the 
convolution theorem. Note that in eqn. 6, the size of the FFTs is 
2N, and xp is the array x padded with N zeros. After h is solved by 
the above CG-FFT method, we can obtain a from eqn. 3 by 

Nl2--1 

which can be achieved by the NUFFT-2 algorithm. 
In summary, the procedures for the NU-IFFT algorithm for 

eqn. 1 are: 
(i) Preprocessing: to use the NUFFT-1 for array {a,} through eqn. 
5, and to use the FFT algorithm to find [FFT(a)] 
(ii) Inversion: to use the CG-FFT method to find a solution for h 
in eqn. 3 
(iii) Transposition: to apply the NUFFT-2 to the transposed prob- 
lem in eqn. 7. 

In these procedures, since NUFFT-1 and NUFFT-2 require 
O(mMog2N) arithmetic ’operations, the most expensive step is the 
CG-FFT solution. It requires O(Mvlog2N) arithmetic operations, 
where the number of iterations K in the CG method is propor- 
tional to the condition number of A M .  In most applications, K is 
rather small as the points { tk} are fairly uniformly spaced. A simi- 
lar algorithm has been developed for the NU-IFFT of eqn. 2. 

Numerical results: We first compare the algorithm in [2] and our 
algorithm with cosine accuracy factors, and N = 64, m = 2, and q 
= 8. The input frequency-domain datax and the locations of the 
temporal sample points are both obtained by a pseudorandom 
number generator with a large variation. The absolute errors in 
our NU-IFFT algorithm are almost an order of magnitude smaller 
than those in the algorithm in [2], as shown in Fig. 1 .  Quantita- 
tively, the & and L, errors are E, = 1.64 x l P ,  E, = 7.17 x l t 7  
in our NU-IFFT algorithm, and E, = 1.26 x 10-1, E, = 4.81 x 1W 
using the algorithm in [2]. 

I 

tk m 
Fig. 1 Comparison of absolute error in NU-IFFT result with that in [2] 
for random input array 
Direct result is a, = (1 + i)[r(k) - 0.51 at tk,= k + r(k)/2, where r(k) is 
random number with uniform distribution in [0, I ]  
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As an example of applications, the NU-IFFT algorithm is used 
to reconstruct the spatial electric field distribution near a high- 
contrast dielectric slab located between x = -1.5 and x = 1.5m. 

-20 -1 0 0 10 20 
x, m 

Fig. 2 Reconstruction of imaginary part of spatial field distribution and 
exact solution near a dielectric slab over -I 5 4 x < 1 5m 
The real part has a similar accuracy. The sample points for -2.4268 
5 x 5 2 3810m are twice as dense as the rest of the domain 

- - - -  NU-IFFT 
exact 

The dielectric constant of the slab is E, = 16, and the background 
medium is conductive with E, = 1 and (T = 0.0015S/m. A planar 
electric current source J, is located at x = -1.548m and excites 
waves at 100 MHz. By re-sampling the analytically calculated spa- 
tial spectrum of the electric field E,(k,), we use the NU-IFFT 
algorithm ( N  = 562, m = 2, q = 8) to reconstruct the spatial field 
distribution over a set of nonuniform spatial points {xk}. For sim- 
plicity, the distribution of these { xk )  points is chosen such that the 
sampling rate near and inside the slab (where high-frequency oscil- 
lations exist) is twice that away from the slab. As shown in Fig. 2, 
the NU-IFFT reconstructed field distribution has an excellent 
agreement with the exact solution. The maxmum relative error in 
the reconstruction is O.66%, and the number of CG iterations is K 
= 28. 

Conclusions. Using the CG-FFT method and the NUFFT algo- 
rithms based on the regular Fourier matrices, we develop an 
inverse fast Fourier transform (NU-IFFT) algorithm for nonuni- 
formly spaced data. With a comparable complexity of q K N -  
log,N) (where K is the number of CG iterations), our NU-IFFT 
algorithm is more accurate than the previously reported results 
An example in the field reconstruction near a high-contrast dielec- 
tric slab is shown to demonstrate the application of the NU-IFFT 
algorithm. 
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in direct sequence spre 
cellular environ~ent§ 

M.P. Fitton, M.A. Beach and A.R. Nix 

The shadowing (or long term) statistics of a wireless system have 
a large unpact on overall performance The authors show 
experimentally that the inherent path diversity of a drect 
sequence spread spectrum system will reduce the effect of long- 
term envelope variation due to shadowmg This will result in a 
network with more homogeneous quality-of-service, reduce 
handovers, and mprove capacity 

Introduction. Direct sequence code dimion multiple access (DS- 
CDMA) techniques are widely employed for a variety of wireless 
communications [ 11. The advantages include robust multiple 
access and the provision of path diversity, for example through 
the use of a RAKE receiver 121. The propagation aspects of 
employing a large transmission bandwidth are manifold, and 
include increased path diversity [2] and the mitigation of power 
control errors 131. 

It has been demonstrated that, as the spreading bandwidth 
increases, the fast fading charactenstic of each diversity path 
becomes more deterministic [2]. However, in this Letter it is illus- 
trated that the long term (shadowing) characteristic will also 
become more deterministic when employing a large spreading 
bandwidth and path diversity. In this analysis, a real mcrocellular 
environment was rigorously characterised [4], including deeply 
shadowed and street-corner regions. 

The importance of shadowing (or long-term fading) is far reach- 
ing and well understood 131 The effects of bmldings, hills, vegeta- 
tion and other obstructions surrounding the transmitter and 
receiver can cause large envelope variations over distances of sev- 
eral metres. In a microcellular environment, it is likely that a 
number of paths arriving at the receiver will possess largely inde- 
pendent shadowing. This arises as propagation is largely confined 
to street-canyons [3], resulting in significant angular spread of 
multipath components, and low correlation, as shown later. 

power relative to mean,dB 
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Fig. 1 Shadowing statistics for  various spreading bandwidths 
narrowband 
125 MHz 
4 MHz 
8 MHz 
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Propagation measurements In a deeply shad the 
receiver has no line-of-sight path, and no large sur- 
rounding obstructions occur. The narrowband and- 
ard deviation is 3.6dB, which agrees with previous research [5]. 
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