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Abstract—Consider a mobile sensor network that is used to
monitor a moving target in a field with obstacles. In this paper,
an efficient relocation technique that simultaneously maximizes
the network lifetime is proposed. The main sources of energy
consumption in the network are sensing, communication, and
movement of the sensors. To account for this energy consumption,
a graph is constructed with edges that are weighted based on the
remaining energy of each sensor. This graph is subsequently em-
ployed to address the lifetime maximization problem by solving
a sequence of shortest path problems. The proposed technique
determines a near-optimal relocation strategy for the sensors as
well as an energy-efficient route to transfer information from the
target to destination. This near-optimal solution is calculated in
every time instant using the information obtained through the
previous time step. It is shown that by choosing appropriate
parameters, sensors’ locations and the communication route
from target to destination can be arbitrarily close to their
corresponding optimal choices at each time instant. Simulation
results confirm the effectiveness of the proposed technique.

I. INTRODUCTION
Recently, mobile sensor networks (MSN) have received

considerable attention in the literature due to their applica-
tions in emerging technologies such as health monitoring [1],
environmental monitoring [2], [3], intrusion detection [4], [5],
surveillance [6], [7] and target tracking [8], [9]. In [8], the
problem of underwater target tracking is investigated, where it
is desired to minimize the energy consumption of the sensors.
In [9], it is aimed to activate the minimum number of sensors
in the network to track a moving target. The mobility of
sensors allows a sensor network to adaptively compensate
for variations in the environment, and therefore address the
intended application more efficiently. In particular, mobile
sensor networks can be very effective in tracking and mon-
itoring moving (or otherwise changing) targets. The sensors
are required to collaboratively route the target information to
a designated destination node.
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The MSNs (and other types of sensor networks, in general)
are heavily constrained by limitations in resources such as
energy and processing capability. Such constraints should be
taken into account in the design of efficient motion-planning
algorithms in a practical setting. In [10], a network of mobile
sensors is used for structural health monitoring while address-
ing challenges such as adaptability and resource limitations.
The authors in [11] develop a wireless sensor network for
measuring various bio-parameters such as ECG, EEG and
EMG. Adding the mobility feature to such networks will
create an intelligent environment that can pervasively monitor
the health of elderly patients regardless of their position in
hospitals or care centers.
Many researchers have investigated the problem of energy

minimization in MSNs. The authors in [12] propose an ap-
proach for maintaining connectivity in a network of static
and mobile backbone nodes. The strategy aims at minimizing
the number of backbone nodes and controlling their mobility.
A distributed control scheme is proposed in [13] to position
the aerial vehicles in such a way that the signal-link quality
among a team of ground and air vehicles is optimized. The air
vehicles position themselves such that the communication-link
quality is optimized. The ground vehicles, on the other hand,
perform a collaborative task independent of the air vehicles.
The problem of distributed tracking of a maneuvering target
using a sensor network is investigated in [14]. It is assumed
that the sensing range of the sensors is limited. It is also
assumed that the target can only be observed by a small
group of sensors, and it is hidden from most of them. A
message-passing version of the Kalman-Consensus filter is
then proposed to track a maneuvering target effectively. Note
that mobile sensors are often powered by small batteries which
might be difficult to replace because of the harsh environmen-
tal conditions or even cost given the relatively high number and
frequency of the required replacements in a typical network.
Therefore, minimizing the energy consumption of the sensors
while maintaining the network-level objectives are essential in
the design of an efficient MSN. A technique is presented in
[15] to transform the problem of designing an energy-efficient
target tracking MSN to the popular shortest path problem. The
above work tackles the energy minimization problem in an
obstacle-free environment, while in [16] the same problem
is investigated in the presence of obstacles. In addition to
minimizing the energy consumption of each individual sensor,
it is often desired to maximize the lifetime of the network.
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It is important to note that although the lifetime maximiza-
tion problem is closely related to the energy minimization
problem, they have important differences as demonstrated by
simulations in Section V. In other words, minimizing the
energy consumption of sensors does not necessarily imply
maximizing network lifetime. In [17], the problem of energy
imbalance in many-to-one sensor networks is investigated, and
a general model is proposed for maximizing network lifetime.
An analytical framework is presented in [18] to study coverage
and lifetime in an MSN using a two-dimensional Gaussian
distribution model.
Another class of strategies for increasing the lifetime of the

MSNs uses a mobile sink instead of moving all sensors. For
example, the authors in [19] plan the mobility of a sink node
by solving a mixed integer linear programming problem in
order to prolong the network lifetime. As another example,
in [20] a distributed strategy is presented to find the optimal
information flow vector in a network consisting of battery
powered static sensors and a mobile sink. In [21], the NP-hard
problem of planning the optimal trajectory of a mobile sink for
collecting data from sensors is converted to a convex problem
which can be solved efficiently to maximize the lifetime of the
network (note that typically sending the collected information
from all sensors to a fixed sink requires a large amount of
energy). The authors in [22] introduce a sensor network with
k mobile sinks, each of which can travel a limited distance,
receive data through a predetermined number of hops, and plan
the trajectory of the mobile sinks using a joint optimization
problem. A distributed algorithm is developed in [23] to
maximize the lifetime of the network for the case when data is
transfered to a mobile sink and some delay can be tolerated in
the process. Some other techniques have also been presented in
the literature which take the movement energy of the sensors
into consideration. For instance, the authors in [24] propose
a target tracking strategy in an MSN to increase the lifetime
of the network in an obstacle-free environment but the results
cannot be easily extended to the case of an environment with
obstacles.
Although several papers have investigated the problem of

network lifetime maximization, most of the existing results
only consider communication and/or sensing in the energy
consumption model, and the mobility of the sensors is often
neglected in the formulation in order to simplify the analy-
sis [8]-[25]. In fact, in most applications sensor movement is
the dominant source of energy consumption. To the best of the
authors’ knowledge, there is no result on target monitoring in
the literature, where the movement of the sensors is considered
in the energy consumption model. In this paper, the problem
of tracking and monitoring a moving target in a field with
obstacles is investigated. It is assumed that the main sources
of energy consumption of sensors in the network are sensing,
communication, and movement. It is also assumed that the
obstacles in the field can limit the communication and sensing
capabilities of the sensors by blocking the path between them.
The main objective is to develop an efficient motion strategy
for the sensors such that the network lifetime is maximized,
while any possible obstacles are avoided. To this end, an
energy-efficient route is obtained to transfer information from

the target to destination using a shortest path algorithm. The
sensors move to their new locations and the algorithm is
repeated after a prescribed time interval (which is set based on
the target’s maximum speed). The important properties of the
proposed strategy in relation to the lifetime of the network are
discussed in detail. The main contribution of the present work
with respect to the existing literature is that it investigates
the problem in the presence of obstacles, and that it uses
an accurate model for energy consumption. These issues add
significant complexity to problem analysis. Preliminary results
of this work have been published in [24], [26].
The plan of the remainder of the paper is as follows. In Sec-

tion II, a modified form of the conventional Voronoi diagram
reflecting the energy consumption of the sensors is introduced.
The problem statement is provided in Section III, along with
some important assumptions and definitions. In Section IV, an
energy-efficient monitoring strategy for mobile sensors in the
presence of obstacles is presented, as the main contribution
of this work. Simulation results are provided in Section V to
demonstrate the effectiveness of the proposed strategy. Finally,
some concluding remarks are given in Section VI.

II. RESIDUAL ENERGY-BASED VORONOI DIAGRAM

Consider a set of n distinct weighted nodes denoted by S =
{(S1, e1), (S2, e2), . . . , (Sn, en)} in a 2D plane, where ei > 0
is the weighting factor associated with the i-th node Si, for
any i ∈ n := {1, 2, . . . , n}. Let a distance function between an
arbitrary point Q in the above plane and the weighted node
(Si, ei) be given; denote this function by f(Si, ei, Q). The
extended Voronoi diagram is defined as a partitioning of the
plane into n regions in such a way that the nearest node (in
terms of the distance function given above) to any point inside
a region is the node assigned to that region. The mathematical
description of each region obtained by the above partitioning
is as follows:

Πi = {Q ∈ R2|f(Si, ei, Q) ≤ f(Sj , ej , Q), ∀j ∈ n\{i}}
(1)

Note that for certain functions f(.) and weighting factors ei,
some regions may be empty (contain no points).
Now, consider n sensors in a field, and let them be rep-

resented by the nodes S1, S2, . . . , Sn described above. The
weight of the node Si in (1) is set to be the remaining energy
of that sensor (hence, it varies with time). Furthermore, let
f(Si, ei, Q) be equal to the difference between the initial
energy of the i-th sensor, denoted by Ei,0, and the remaining
energy of that sensor after traveling to point Q. Without loss
of generality, assume that the initial energy of every sensor is
the same, and denote it by E0. Assume also that the sensor
movement energy is proportional to the travel distance. Then,
one can write:

f(Si, ei, Q) = (Ei,0 − ei) + es + βd(Si, Q) (2)

where β is a known constant whose value depends on the
mechanical characteristics of the sensor. In fact, the energy
consumption of a motion actuator (e.g., a motor) is, approx-
imately, proportional to the moving distance. The coefficient
β reflects this dependency. Also, es is the energy required



Fig. 1: An example of the residual energy-based Voronoi diagram for 2
sensors with different amounts of energy.

to overcome the static friction (when the sensor starts to
move) which is assumed to be the same for all sensors.
Furthermore, d(Si, Q) is the Euclidean distance between Si

and Q. Given the specific distance function f(.) used in
this paper, the extended Voronoi diagram will hereafter be
referred to as the residual energy-based Voronoi (RE-Voronoi)
diagram. Note that this diagram is constructed based on the
residual energy of the sensors, and is completely different
from the energy Voronoi diagram introduced in [16], which is
constructed based on the energy consumption of the sensors.
Some important characteristics of the RE-Voronoi diagram are
described in the sequel.
Consider sensors 1 and 2 with the remaining energies e1

and e2, respectively. If f(S1, e1, Q) = f(S2, e2, Q), then:

(E0 − e1) + es + βd(S1, Q) = (E0 − e2) + es + βd(S2, Q)

⇒ e1 − es − βd(S1, Q) = e2 − es − βd(S2, Q)

⇒ d(S1, Q)− d(S2, Q) =
e1 − e2

β
(3)

(i.e., the difference between the two distances is constant).
Therefore, any point Q for which f(S1, e1, Q) = f(S2, e2, Q)
lies on one branch of a hyperbola (in the special case when
e1 = e2, this branch turns out to be the perpendicular bisector
of the segment S1S2) [26]. To construct the RE-Voronoi region
associated with a node in the network, first the branches of the
above-mentioned hyperbolae between that node and all other
nodes are drawn. The smallest region containing the node is,
in fact, the region assigned to that node. Fig. 1 shows the
RE-Voronoi diagram for 2 sensors with different amounts of
energy.
Now, consider a 2D field with obstacles. When an obsta-

cle intersects the line connecting a sensor to its candidate
location, then the sensor cannot move on a straight line to
arrive at that position. In addition, obstacles can significantly
perturb the communication and sensing reach of the sensor. In
particular, in this work it is assumed that the communication
and detection signals of the sensors are completely blocked
by obstacles [27]. Fig. 2 shows an example where the target
cannot be detected by the sensor because of the way the
obstacle is positioned. Since the obstacle is blocking the line-
of-sight between the points S and Q, the sensor can, for
instance, move along the segments SA,AQ, which represent

Fig. 2: An example of a sensor near an obstacle with blocked sensing reach.

Fig. 3: An example of a sensor near an obstacle with blocked
communication reach.

the shortest distance in this case. In this work, the shortest
distance is used instead of conventional Euclidean distance
d(S,Q) to calculate the movement energy of any sensor in the
formulation of the RE-Voronoi diagram. Furthermore, as Fig. 3
shows, two sensors located on opposite sides of an obstacle
cannot communicate even if they are distanced within each
others normal communication range. Fig. 4 depicts the RE-
Voronoi diagram in the presence of obstacles for two sensors,
which will hereafter be referred to as the obstructed residual
energy-based Voronoi (ORE-Voronoi) diagram. As it can be
observed from this figure, the boundaries of the ORE-Voronoi
regions in this case are not necessarily branches of hyperbolae,
and their shapes are highly dependent on the configuration
of obstacles. It is important to note that, In general, the
computation of the residual energy-based Voronoi diagram is
much more complex than that of the conventional Voronoi
diagram [28], [29].

III. PROBLEM STATEMENT

Consider a group of n mobile sensors S1, . . . , Sn, a moving
target, and a fixed access point (also referred to as the
destination point). The main objective of this work is defined
below.
Sensor Coordination Problem: It is desired to develop

an algorithm to: (i) monitor the target such that it remains
in the sensing range of at least one sensor at all times; (ii)
transmit information from the target to destination point, and
(iii) maximize the lifetime of the network. More precisely,
the objective is to compute the new locations of sensors at
each time instant such that a set of prescribed specifications
are met. These specifications include end-to-end connectivity
preservation from the target to a fixed destination (through the
sensing and communication links), while the durability of the
sensors is maximized.
In order to develop an energy-efficient sensor deployment

strategy, it is required to adopt a proper model for the energy
consumption of sensors. In general, the energy consumption
of mobile sensors is mainly due to communication, sensing,



Fig. 4: An example of the obstructed residual energy-based Voronoi
diagram for two sensors with different amounts of energy.

and movement. Although minimizing energy consumption is
of great importance in an MSN, in many applications it is more
desirable to maximize the lifetime of the sensors instead, in
order to increase the durability of the overall network (note that
energy minimization and lifetime maximization are closely-
related but not identical problems). An effective strategy to
maximize the lifetime of a sensor network is to deploy sensors
in such a way that the ones with smaller residual energy
consume less power. To this end, sensors must operate in a
collaborative fashion in order to determine for each of them
the best location as well as the most efficient routing path to
transmit information from the target to destination. Since the
analytical solution of this problem is complex in general, as an
efficient alternative approach, the sensing field is divided into a
grid first. The grid cells are chosen sufficiently small such that
the sensors and target can be assumed to be located on some
nodes of the grid at every time instant. Construct a directed
graph (digraph) whose vertices are the grid nodes, and let
the edges be weighted in terms of the above-mentioned three
sources of energy consumption as described later. This digraph
will hereafter be called the energy consumption digraph.

Definition 1. Network lifetime is the time it takes for the
first sensor to completely deplete its energy. It is to be noted
that different definitions are given for network lifetime in the
literature and the one adopted here is consistent with that in
[30], [31] and [32].

Notation 1. Throughout this paper, the nearest sensor to node
Q in terms of energy consumption, referred to as EC-nearest
sensor to node Q, is denoted by S1

Q and characterized by:

f(S1
Q, eS1

Q
, Q) ≤ f(Sj , ej , Q), S

1
Q ∈ S, Sj ∈ S\{S1

Q} (4)

where eS1
Q
is the remaining energy of sensor S1

Q. Also, the
i-th nearest sensor to node Q (again in terms of energy
consumption) is referred to as the i-th EC-nearest sensor to
Q, and is denoted by Si

Q. This can be formulated as:

f(Si
Q, eSi

Q
, Q) ≤ f(Sj , ej , Q), S

i
Q ∈ S\

i−1⋃
h=1

{Sh
Q},

Sj ∈ S\
i⋃

h=1

{Sh
Q}

(5)

where eSi
Q
is the remaining energy of sensor Si

Q. Furthermore,
the residual energy of the i-th EC-nearest sensor to Q, after
traveling to this point will be denoted by Ei

r,Q.

Assumption 1. It is assumed that the sensor assigned to sense
the target at any time instant is the EC-nearest sensor to it,
which is hereafter called the monitoring sensor at that time
instant. Note that this sensor is not necessarily fixed (i.e., it
may change from time to time). A subset of other sensors can
be employed accordingly to create an information route from
the target to destination.

In the definition of the EC-nearest sensor to the target the
residual energy of sensors as well as the distance between the
sensors and target are taken into consideration. That is why
this notion is used to select the monitoring sensor such that
the reliability and durability of target monitoring is improved
(note that a sensor near the target which has sufficient amount
of energy would be an ideal choice for the monitoring sensor).
Denote the monitoring sensor by ST (note that ST ∈

{S1, S2, . . . , Sn} at any time instant) and the destination point
by PD. Denote also the target node and the RE/ORE-Voronoi
region containing it by PT and ΠT , respectively. The following
assumption and definition are borrowed from [15].

Assumption 2. It is assumed that the target is at a reachable
distance from the destination point through other sensors at
all times, i.e. d(PT , PD) ≤ nRc + Rs, where d(., .) denotes
the shortest distance between two points. Also, n, Rc and Rs

denote the number of sensors, their communication radius and
sensing radius, respectively.

Note that the condition in Assumption 2 is intuitive in the
sense that if the distance between the target and destination
point exceeds nRc + Rs, then transferring information from
the target to destination is impossible and meaningless.

Definition 2. A sensing node is a node belonging to ΠT , from
where a sensor can sense the target. Furthermore, any node of
a given path P excluding the target and destination is referred
to as a path node of P .

IV. MAIN RESULTS

Consider a 2D field with some obstacles and n sensors.
Partition the field into the ORE-Voronoi regions, and denote
the j-th region by Πj , for any j ∈ n. A weight-assignment
algorithm is provided in the sequel to find some candidate lo-
cations for the sensors in order to solve the sensor coordination
problem. Construct a digraph where an edge from PT to a node
Pj exists if and only if Pj is a sensing node; the weight of
this edge is considered to be 0. Fig. 5 demonstrates the edges
originated from PT for an RE-Voronoi diagram (no obstacles).
Furthermore, there is an edge from node Pi (Pi �= PT ) to
another node Pj in this digraph if and only if a sensor located
at Pi could transmit the information to a sensor located at Pj .
Note that in the case where an obstacle is blocking the line-of-
sight between Pi and Pj , there would be no edge between their
corresponding vertices in the digraph. The following procedure
is used for the weight assignment of the edges in the digraph.



Fig. 5: Edges originating from the target to its adjacent sensing nodes in a
residual energy-based Voronoi diagram.

Weight-Assignment Strategy

Case 1) Assume Pi and Pj are in different regions OR Pj

is the destination node. Then:

i) If the target and Pi are in the same region AND Pi is
not a sensing node, then the weight of the edge from Pi

to Pj is given by:

w(i, j) =

[
E0 − E2

r,Pi
+ ωc(Pi, Pj)

E0

]k

where ωc(Pi, Pj) is the communication cost from node
Pi to Pj , E2

r,Pi
is the residual energy of the second

EC-nearest sensor to Pi after traveling to this point (see
Notation 1), and k is a constant which will be introduced
later.

ii) If the target and Pi are in different regions, then:

w(i, j) =

[
E0 − E1

r,Pi
+ ωc(Pi, Pj)

E0

]k

where E1
r,Pi

is the residual energy of the EC-nearest
sensor to Pi after traveling to this point (see Notation 1).

iii) If Pi is a sensing node, then:

w(i, j) =

[
E0 − E1

r,Pi
+ ωc(Pi, Pj) + ωs(PT , Pi)

E0

]k

where ωs(PT , Pi) is the required sensing energy for a
sensor at Pi to sense the target.

Case 2) Consider now the case where Pi and Pj are in the
same region, AND Pj is not the destination node.

i) If the target and Pi are in the same region AND Pi is
not a sensing node, then:

w(i, j) =

[
E0 − E2

r,Pi
+ ωc(Pi, Pj)

E0

]k

ii) If the target and Pi are in different regions, then:

Fig. 6: Different types of edges for a field with three sensors.

w(i, j) = max

⎛
⎝min

⎛
⎝[

E0 − E1
r,Pi

+ ωc(Pi, Pj)

E0

]k

+

[
E0 − E2

r,Pj
+ ωmin

E0

]k

,

[
E0 − E1

r,Pj
+ ωc(Pi, Pj)

E0

]k

+

[
E0 − E2

r,Pi
+ ωmin

E0

]k
⎞
⎠

−
[
E0 − E1

r,Pj
+ ωmax

E0

]k

,

[
E0 − E1

r,Pi
+ ωc(Pi, Pj)

E0

]k
⎞
⎠

where ωmin is the smallest amount of energy required
by any sensor on a grid node to communicate with the
nearest node to it in the grid, and ωmax is the largest
amount of energy required by any sensor on a grid node to
communicate with the farthest node in its communication
range.

iii) If Pi is a sensing node, then:

w(i, j) =

[
E0 − E1

r,Pi
+ ωc(Pi, Pj) + ωs(PT , Pi)

E0

]k

Fig. 6 illustrates sample edges for each of the above cases
for the sensor network of Fig. 5. In the edge AB, node A is
not a sensing node but it is in the same region as the target
and it is not in the same region as Pj . Thus, the edge AB
is an example of case 1(i). On the other hand, CD and EF
satisfy the conditions of case 1(ii) because EF has vertices in
different regions while E is not in the target’s region, and D is
the destination node. The edge GH represents case 1(iii) as
G is a sensing node. Moreover, the three edges IJ , KL and
MN are examples of cases 2(i), 2(ii) and 2(iii), respectively.
Given an energy consumption digraph, it is desired now

to find the shortest path connecting the target to destination,
subject to the constraint that the number of nodes in the
path is less than or equal to the number of sensors. This
path provides an information route which is optimal for



lifetime maximization under some conditions as discussed
later. Algorithm 1 summarizes the proposed technique.

Algorithm 1
1) Divide the field to rectangular grid cells.
2) Partition the field using the obstructed residual energy-

based Voronoi diagram.
3) Construct a digraph with the grid nodes as its vertices.
4) Assign proper weights to the edges of the constructed

digraph using the proposed weighting strategy.
5) Find the shortest path connecting the target to the desti-

nation node.
6) Move the sensors to the nodes of the shortest path for

establishing the information link.
7) Repeat the algorithm from step 2 after relocating the

sensors.

As noted in [24], an efficient routing algorithm (such as
Dijkstra) can be used to find the shortest path in an energy
consumption digraph. If the number of nodes in the shortest
path turns out to be greater than n, then one can switch to a
constrained shortest path algorithm, which is typically slower
than its unconstrained counterparts [33]. Note that although
finding the shortest path subject to some constraints in a graph
is, in general, an NP-hard problem [34], it can be solved in
polynomial time in special cases, e.g., when the number of
nodes on the path does not exceed a certain value [35].

Remark 1. The proposed algorithm is mainly dependent on
the residual energy of sensors not their initial energy. Hence,
the assumption that all sensors have the same initial energy,
used in Section II, is only for simplicity of analysis (more
precisely, it simplifies some of the expressions). If the initial
energies are not the same, one can still use the simplified
analysis by choosing a value that is greater than all initial
energies and using it for all sensors in the equations.

Remark 2. The constant parameter β in (3) has significant
impact on the shape of the regions in the residual energy-based
Voronoi diagram. Since in the weight-assignment strategy
(which is a very important part of the proposed algorithm)
the regions’ shapes and configuration play a key role, hence
β is a very important parameter in the proposed algorithm.

Definition 3. A path P with at most n nodes which connects
the target to destination is called a feasible path. The sum
of the weights of the directed edges of a feasible path P is
denoted by W (P ), and is referred to as the path weight of P .

Definition 4. Throughout this paper, the percentage of the total
energy consumption of a sensor is referred to as the consumed
energy of that sensor. In other words, consumed energy is
equal to the ratio of the difference between the initial energy
of a sensor and its residual energy, to its initial energy.

Definition 5. Consider a network of n mobile sensors
S1, S2, . . . , Sn, and a feasible path P with m nodes, de-
noted by the ordered set (PT , P1, P2, ..., Pm, PD). Assume
the EC-nearest sensor (among n sensors) to the target is
assigned to P1. For the rest of the sensors and the path

nodes, there are
(
n−1
m−1

)
(combination of m− 1 out of n− 1)

possible sensor assignments, which together with the sensor
assigned to P1 can be used to transfer information from PT

to PD in this case. Let the assignment of the distinct sensors
Si1 , Si2 , . . . , Sim to the nodes P1, P2, . . . , Pm, respectively, be
denoted by the pair (P, SP ), where SP represents the ordered
set (Si1 , Si2 , . . . , Sim). Furthermore, denote by (P, S∗

P ) the
sensor assignment for which the energy consumption of the
sensor with the smallest residual energy (after relocating
the sensors and transmitting information from the target to
destination) is minimum, and call it the optimal assignment.
Note that the optimal sensor assignment is not unique. Also,
it is important to note that the optimal sensor assignment
can change each time the sensors are relocated. However, to
simplify notation, the time-dependence has not been explicitly
shown in the above representation.

Definition 6. Consider the optimal assignment (P, S∗
P ) for

an MSN. The k-th power of the consumed energy of sensor
Sij after traveling to node Pj and exchanging information is
referred to as the node cost of Pj in path P , and will hereafter
be denoted by CP (Pj). Furthermore, the sum of the node costs
of all the path nodes of P is called path cost of P , and is
denoted by C(P ).

Theorem 1. For any feasible path P in an energy consumption
digraph, the inequality W (P ) ≤ C(P ) holds.

Proof: Assume that the feasible path P =
(PT , P1, P2, . . . , Pm, PD) passes through regions
Π1,Π2, . . . ,Πh, and that the path has ni nodes in region Πi,
i = 1, 2, . . . , h. Note that Πi and Πj can be the same regions,
1 ≤ i, j ≤ h, j �= i+1. Partition P into h sub-paths as follows:

P 1 = (PT , P
1
1 , P

1
2 , ..., P

1
n1
, P 2

1 )
P 2 = (P 2

1 , P
2
2 , ..., P

2
n2
, P 3

1 )
...
Ph = (Ph

1 , P
h
2 , ..., P

h
nh
, PD)

Now, it suffices to show that for any sub-path, the
path weight is less than or equal to the corresponding
path cost. If Πa contains exactly one node for any
a = 1, 2, . . . , h, then the sub-path P a contains only
the edge (P a

1 , P
a+1
1 ) (note that Ph+1

1 is, in fact, the
destination node PD). The weight assigned to this edge

in the digraph is
[
E0−E1

r,Pa
1
+ωc(P

a
1 ,Pa+1

1 )

E0

]k
for a �= 1

and
[
E0−E1

r,Pa
1
+ωc(P

a
1 ,Pa+1

1 )+ωs(PT ,Pa
1 )

E0

]k
for a = 1, which

correspond to the assignment of the EC-nearest sensor to node
P a
1 . It is important to note that in both cases the assigned

weight is equal to the minimum combined cost of movement,
communication, and sensing of a sensor after moving to P a

1 .
If the EC-nearest sensor to P a

1 is also the EC-nearest sensor
to some other nodes in the path, the weight is less than the
cost.
On the other hand, if Πa contains more than one node,

then there will be two possibilities as follows:



Case 1: a �= 1. In this case, the weight of every edge
from Pi to Pj is either

min

⎛
⎝[

E0 − E1
r,Pi

+ ωc(i, j)

E0

]k

+

[
E0 − E2

r,Pj
+ ωmin

E0

]k

,

[
E0 − E1

r,Pj
+ ωc(i, j)

E0

]k

+

[
E0 − E2

r,Pi
+ ωmin

E0

]k
⎞
⎠−

[
E0 − E1

r,Pj
+ ωmax

E0

]k

or [
E0 − E1

r,Pi
+ ωc(i, j)

E0

]k

Let the former be called type A edge and the latter type B
edge. Divide the sub-path P a to l sub2-paths as follows:

P a,1 = P a,1
1 , P a,1

2 , . . . , P a,1
m1

, P a,2
1

P a,2 = P a,2
1 , P a,2

2 , . . . , P a,2
m2

, P a,3
1

...
P a,l = P a,l

1 , P a,l
2 , . . . , P a,l

ml
, P a+1,1

1

such that the last edge in any sub2-path P a,b, b = 1, 2, . . . , l,
is a type B edge, and the rest of the edges in that sub2-path
are type A. Obviously, in any region Πa there is at least one
sub-path, and every sub-path contains at least one type B
edge.
Assume now that the EC-nearest sensor to all nodes of Πa

is assigned to one of the nodes of a sub2-path P a,b, 1 ≤ b ≤ l.
In this case, the weight assigned to P a,b is:

W b(a) =

mb−1∑
q=1

[
min

(
g(1, P a,b

q , P a,b
q+1)

+gmin(2, P
a,b
q+1), g(1, P

a,b
q+1, P

a,b
q )+gmin(2, P

a,b
q )

)
− gmax(1, P

a,b
q+1)

]
+ g(1, P a,b

mb
, P a,b+1

1 )

(6)

where g(u, Pi, Pj) =
[
E0−Eu

r,Pi
+ωc(Pi,Pj)

E0

]k
, gmin(u, Pi) =[

E0−Eu
r,Pi

+ωmin

E0

]k
, and gmax(u, Pi) =

[
E0−Eu

r,Pi
+ωmax

E0

]k
.

From the properties of the ORE-Voronoi diagram, the EC-
nearest sensor to all nodes of the sub2-paths P a,b is the same,
but the sensor can move to only one node. Thus, the cost of
moving mb sensors to mb nodes of the sub2-paths, denoted
by Cb(a), satisfies the following inequality:

Cb(a) ≥ g(1, P a,b
j , P a,b

j+1) +

mb∑
q=1,q �=j

g(2, P a,b
q , P a,b

q+1),

∀j ∈ {1, 2, ...,mb}
(7)

It is straightforward now to derive the following relations:

W b
a,1 =

j−1∑
q=1

g(1, P a,b
q+1, P

a,b
q+2)

+ gmin(2, P
a,b
q )− g(1, P a,b

q+1, P
a,b
q+2)

≥
j−1∑
q=1

min
(
g(1, P a,b

q , P a,b
q+1)

+ gmin(2, P
a,b
q+1), g(1, P

a,b
q+1, P

a,b
q+2) + gmin(2, P

a,b
q )

)
− g(1, P a,b

q+1, P
a,b
q+2)

(8)

W b
a,2 =

⎡
⎣mb−1∑

q=j

g(1, P a,b
q , P a,b

q+1) + gmin(2, P
a,b
q+1)

− g(1, P a,b
q+1, P

a,b
q+2)

⎤
⎦+ g(1, P a,b

mb
, P a,b+1

1 )

≥
⎡
⎣mb−1∑

q=j

min
(
g(1, P a,b

q , P a,b
q+1)

+ gmin(2, P
a,b
q+1), g(1, P

a,b
q+1, P

a,b
q+2) + gmin(2, P

a,b
q )

)

− g(1, P a,b
q+1, P

a,b
q+2)

⎤
⎦+ g(1, P a,b

mb
, P a,b+1

1 )

(9)

By expanding the right side of the above relations and simpli-
fying them, it is concluded that:

W b
a,1 +W b

a,2 = g(1, P a,b
j , P a,b

j+1) +

mb∑
q=1,q �=j

g(2, P a,b
q , P a,b

q+1)

≥
mb−1∑
q=1

[
min

(
g(1, P a,b

q , P a,b
q+1)

+ gmin(2, P
a,b
q+1), g(1, P

a,b
q+1, P

a,b
q+2)

+ gmin(2, P
a,b
q )

)
− g(1, P a,b

q+1, P
a,b
q+2)

]
+ g(1, P a,b

mb
, P a,b+1

1 )

(10)

Since g(u, Pi, Pj) ≤ gmax(u, Pi) for any integer u and any
points Pi and Pj , the following inequality is obtained:
mb−1∑
q =1

[
min

(
g(1, P a,b

q , P a,b
q+1)

+ gmin(2, P
a,b
q+1), g(1, P

a,b
q+1, P

a,b
q+2) + gmin(2, P

a,b
q )

)
− g(1, P a,b

q+1, P
a,b
q+2)

]

+ g(1, P a,b
mb

, P a,b+1
1 ) ≥

mb−1∑
q=1

[
min

(
g(1, P a,b

q , P a,b
q+1)

+ gmin(2, P
a,b
q+1), g(1, P

a,b
q+1, P

a,b
q+2) + gmin(2, P

a,b
q )

)
− gmax(1, P

a,b
q+1)

]
+ g(1, P a,b

mb
, P a,b+1

1 )

(11)



Note that the right side of (11) is, in fact, equal to W b(a).
From (7), (10) and (11), one arrives at:

Cb(a) ≥W b(a)

Now, for the other sub2-path P a,c, c = 1, 2, . . . , l, c �= b, one
can write:

Cc(a) ≥
mc∑
q=1

g(2, P a,c
q , P a,c

q+1)

≥ g(1, P a,c
j , P a,c

j+1) +

mc∑
q=1,q �=j

g(2, P a,c
q , P a,c

q+1),

∀j ∈ {1, 2, ...,mc}
Using a similar approach:

Cc(a) ≥W c(a)

Recall that the weight and cost of a sub-path in a region Πa

are the sum of the weights and costs of the sub2-paths of that
region. Thus, for region Πa:

C(a) ≥W (a), a = 2, 3, . . . , h

where C(a) and W (a) are the path cost and path weight of
sub-path P a, respectively.
Case 2: a = 1 (the region contains the target). In this case,
the EC-nearest sensor to the nodes of this region is assigned
to detect the target, and hence, cannot be assigned to another
node. Thus, the cost of the sub-path P 1 satisfies the following
inequality:

C(1) ≥ gs(1, P
1
1 , P

1
2 ) +

n1∑
q=2

g(2, P 1
q , P

1
q+1)

where gs(u, Pi, Pj) =
[
E0−Eu

r,Pi
+ωc(Pi,Pj)+ωs(PT ,Pi)

E0

]k
. On

the other hand, the proposed weight-assignment strategy
yields:

W (1) = gs(1, P
1
1 , P

1
2 ) +

n1∑
q=2

g(2, P 1
q , P

1
q+1)

and hence:

C(1) ≥W (1)

This completes the proof.

Definition 7. A good path is defined as a feasible path P with
the following properties:
i) It has at most two nodes in the region ΠT and at most one
node in other regions.
ii) If the region ΠT contains exactly two nodes of the path,
say Pi and Pj , creating a directed edge from Pi to Pj , then
the path P does not pass through the region containing the
second EC-nearest sensor to Pj .
Moreover, a feasible path P with at most one node in each
ORE-Voronoi region is referred to as a perfect path. Obviously,
any perfect path is a good path as well.

Definition 8. Consider a network of n mobile sensors and a
feasible path P with m nodes, and let the optimal assignment
(P, S∗

P ) be deployed. Let also the maximum energy consump-
tion (from the initial time of the network operation) among all
sensors once they move to their assigned nodes and transmit
information from the target to destination be referred to as the
max-min energy consumption w.r.t. the path P , and be denoted
by E(P, S∗

P ).

Definition 9. Among all feasible paths, the one w.r.t. which
the max-min energy consumption is minimum will be referred
to as the optimal path. Let this path be denoted by P ∗.

Theorem 2. For any feasible good path, the path weight and
path cost are equal.

Proof: Consider the following two cases:

Case 1: Region Πa, a = 1, 2, . . . , h contains only one
node. In this case, it is important to note that in the optimal
assignment of a good path, the EC-nearest sensor to node Pi

in region Πa is assigned to that node. On the other hand,
the proposed weight-assignment strategy assigns the weight
g(1, Pi, Pi+1) to the edge PiPi+1. Thus, the path cost and
path weight for the edge in region Πa are equal.

Case 2: Region ΠT contains the sensing node Pi as well as
the node Pi+1. Since the EC-nearest sensor is always assigned
to sense the target, in this case the optimal assignment is
the one where the EC-nearest sensor is assigned to Pi and
the second EC-nearest sensor to Pi+1. Note that, from the
definition of a good path, the second EC-nearest sensor to
Pi+1 is not assigned to any other node. Moreover, the weights
of the edges PiPi+1 and Pi+1Pi+2 are gs(1, Pi, Pi+1) and
g(2, Pi+1, Pi+2), respectively. Therefore, the path cost and
path weight are equal for this case as well.

From the above discussions (which are valid for any region),
it is concluded that the path cost and path weight of a good
path are equal.

Remark 3. Since any perfect path is also a good path, the
result of Theorem 2 holds for any perfect path as well.

Definition 10. A feasible path P is said to be θ-optimal if
the difference between E(P, S∗

P ) and E(P ∗, S∗
P∗) is at most

equal to θ, i.e., E(P, S∗
P )− E(P ∗, S∗

P∗) ≤ θ.

Lemma 1. For any positive real numbers ν, x, θ, where x, θ ≤
1, if k > ln(ν)

ln(1+θ) then

(x+ θ)k > νxk

Proof: The inequality k > ln(ν)
ln(1+θ) yields

(1 + θ)k > ν (12)

Since x ≤ 1, thus

(1 +
θ

x
)k ≥ (1 + θ)k (13)

It results from (12) and (13) that (1+ θ
x )

k > ν, or equivalently
(x+ θ)k > νxk.



Theorem 3. Choose an arbitrary constant k > ln(n)
ln(1+θ) and

apply the proposed weight-assignment strategy. If the shortest
path P̄ in the energy consumption digraph is a good path,
then it is θ-optimal.

Proof: Consider the shortest path P̄ with the correspond-
ing optimal assignment, and let the sensor that consumes the
minimum energy E(P̄ , S ∗̄

P
) be denoted by S̄1. The following

two cases are investigated:
Case 1: S̄1 is not assigned to any node of P̄ . Consider the

optimal path P ∗ and the corresponding optimal assignment
S∗
P∗ . If S̄1 is not assigned to any node of the optimal path P ∗

either, then E(P ∗, S∗
P∗) = E(P̄ , S ∗̄

P
). If, on the other hand,

S̄1 is assigned to one of the nodes of the optimal path, then its
energy consumption is greater than E(P̄ , S ∗̄

P
). Note that the

energy consumption of S̄1 is less than or equal to E(P ∗, S∗
P∗),

which implies that E(P̄ , S ∗̄
P
) ≤ E(P ∗, S∗

P∗). By definition,
this means that P̄ is the optimal path. The proof is complete
now on noting that any optimal path is θ-optimal as well.
Case 2: S̄1 is assigned to a node of P̄ . In this case, if P̄ is

not a θ-optimal path, then:

E(P̄ , S ∗̄
P ) > E(P ∗, S∗

P∗) + θ ⇒[
E(P̄ , S ∗̄

P )
]k

> [E(P ∗, S∗
P∗) + θ]

k
(14)

Also, according to Lemma 1:

[E(P ∗, S∗
P∗) + θ]

k ≥ n [E(P ∗, S∗
P∗)]

k (15)

From the definition of path cost and max-min energy con-
sumption and on noting that there are at most n sensors in
any feasible path, one arrives at:

C(P̄ ) ≥ [
E(P̄ , S∗̄

P )
]k (16)

n [E(P ∗, S∗
P∗)]

k ≥ C(P ∗) (17)

Inequalities (14), (15), (16) and (17) yield:

C(P̄ ) > C(P ∗) (18)

On the other hand, from Theorem 1:

C(P ∗) ≥W (P ∗) (19)

Also, since P̄ is a good path, according to Theorem 2:

C(P̄ ) =W (P̄ ) (20)

From (18), (19) and (20), it is concluded that W (P̄ ) >
W (P ∗), which is in contradiction with the fact that P̄ is the
shortest path. Therefore, P̄ is a θ-optimal path.

Corollary 1. Choose k > ln(n)
ln(1+θ) ; if the shortest path P̄ is a

perfect path, then it is θ-optimal too.

Proof: The proof follows immediately from Theorem 3,
on noting that any perfect path is a good path as well.

Remark 4. The proposed weight assignment is performed
such that although there is no guarantee that the shortest path
between the target and destination is a good path, most of the
time it is (as verified by simulations). It can be shown that
in some cases the shortest path is almost always a good path
(i.e., only in some pathological cases the two paths would

not be the same). For example, when the energy consumption
of sensors due to movement is sufficiently greater than that
due to communication, and also the communication ranges of
sensors are relatively large such that they can communicate
to each other with no need to change their positions, the
shortest path would almost always be a good path (note that
these are reasonable assumptions in most practical cases).
Weight assignment is an important component of the proposed
algorithm.

Remark 5. It is to be noted that the optimality of the proposed
solution depends on θ. Although theoretically there is no limit
on the value of k, and a choice of large k will result in a small
θ, a large k could cause numerical problems. More precisely,
for a large value of k, the weight of the directed edges in
the energy digraph might be truncated to zero, and as a result
finding the shortest path between the target and destination
(θ-optimal path) would be meaningless. Therefore, although
theoretically there is no limit on the value of k, there is a
tradeoff between the optimality and computational limitation
which needs to be taken into account when choosing this
parameter.

It is important to note that the proposed algorithm is
centralized, and all the processing is performed in a central
unit in the destination point. Also, note that the network
connectivity is not necessary for performing the proposed
algorithm. The only requirement is that the target should be at
a reachable distance from the destination point through other
sensors at all times (see Assumption 2). This condition is far
less restrictive than the network connectivity condition which
is often required in different sensor network applications.
To perform the proposed algorithm, each sensor needs the
information about the position of the target and other sensors,
as well as their residual energies. Sensors used in an MSN are
typically small, and have limited communication and sensing
capabilities. Due to these limitations, it is possible that the
communication graph of the network will be disconnected
at certain time intervals, and consequently, some sensors
will not have information about the target and other sensors
(note that this information is required for the implementation
of the algorithm). These types of sensors are typically not
equipped with powerful processing modules. Note that the
destination node (which acts as the central unit) does not
have the position information described above directly, and
this information should be transmitted to this node through a
subset of mobile sensors. Note also that usually the destination
node has a more powerful processor and battery, as well
as a strong transmitter capable of sending information about
the newly calculated locations of sensors and the optimal
route to the entire network. Assume at time ti the destination
node has information about the target and all sensors (and
subsequently all sensors also have this information). At time
interval [ti, ti + ΔT ] positions of the target and also the
sensors collaborating in target monitoring (as well as their
residual energies) change. Since a unidirectional multihop
communication link is available from target to destination by
the collaborating sensors, hence information about the target



and these sensors can be transferred to the destination. On the
other hand, the position and residual energy of any sensor that
is not part of the link from the target to destination does not
change in the above time interval, and hence the destination
node still has this information. As a result, the destination node
has all the required information at time ti+1 and sends them
to all sensors.

Remark 6. Using a finer grid (higher resolution) the sensors
can be placed closer to the optimal locations at the expense of
higher computational complexity. In addition, the size of the
time steps is lower-limited by the computational power of the
destination node.

In terms of complexity, the most demanding parts of the
proposed method are weight assignment and shortest path
determination. Consider a field of length L and width W ,
and let the distance between each pair of the neighboring grid
nodes be δ. A decision should be made for every pair of nodes
to classify the corresponding edge in the weight assignment
part of the algorithm. Following an argument similar to the
one presented in [16], the complexity of the algorithm in this
part is of order O(1/δ4). However, from the implementation
point of view, several methods can be used to decrease the
execution time considerably. For example, assume that the
communication range of the sensors is Rc. In this case, for
each node, only the nodes within a neighborhood of radius
Rc need to be checked (for a simple implementation, this can
be a 2Rc×2Rc square centered at that particular node). Since
Rc/δ is typically smaller than L/δ or W/δ, this reduces the
computational complexity. Also, this part of the algorithm can
be executed in parallel for all sensors, which, again, improves
the execution time.
On the other hand, the complexity of the shortest path

algorithm is of order O(E+V logV ) [36], where E and V are
the number of edges and vertices of the energy digraph, re-
spectively. Following a discussion similar to the one provided
in the previous paragraph, the complexity of the shortest path
algorithm in terms of the size of the cells is approximately
O(1/δ4). Therefore, the overall complexity of the algorithm
is approximately O(1/δ4). This means that in the construction
of the energy digraph and finding the shortest path (which are
the most time consuming parts of the algorithm) the number
of sensors is not important. In fact, the effect of the number
of sensors on the complexity of the algorithm is negligible
compared to the procedures mentioned above. Hence, the
algorithm is scalable with respect to the number of sensors.
However, in terms of the size of the field and fineness of
the grid, one should take the above complexity order into
account [16].
The length of time steps, on the other hand, highly depends

on the processing power of the central unit (i.e., the destination
node) as well as the velocity of the target. In fact, one can
reduce the time step as long as the central unit is computation-
ally powerful enough to calculate the candidate locations and
information route in the time interval between the iterations.
Also, the time interval can be increased as long as the target
remains within the sensing range of the monitoring sensor (see

equation 26).

Remark 7. There are different methods which can be used
to reduce the sensing and communication requirements (e.g.,
using event-triggered and self-triggered techniques) in order
to further prolong the network lifetime. This includes, for
example, event-triggered and self-triggered techniques.

In the sequel, the approach in [37] is borrowed to investigate
the real-time implementation of the proposed algorithm, and
address some important practical issues. Let the algorithm be
executed at time instants t0, t1 := t0 +ΔT , t2 := t0 + 2ΔT ,
. . ., where ΔT is the time interval required to complete the
corresponding computations, relocate the sensors, and obtain
a near-optimal route from the target to destination.
Real-time implementation of the algorithm requires infor-

mation about the residual energies of all sensors, as well as
the location of the target and all sensors be shared between
the destination point and sensors. Three execution cycles are
considered in [tj , tj+1] (j = 0, 1, 2, . . .) along with two time
steps δt1, δt2 (δt1 < δt2) as follows:
i) [tj , tj + δt1]: In this cycle, the residual energies and
positions of sensors cooperating in monitoring the target and
transferring its information to the destination node are sent to
this node. Moreover, the information of sensors which are not
cooperating remains unchanged, and hence, is also available at
the destination point. All the required computations are then
performed, and information about new locations of the sensors
and transferring route is shared between all sensors in this
cycle.
ii) [tj + δt1, tj + δt2]: In this cycle, the values obtained in the
previous cycle are used to properly place the sensors in the
field (this is the only cycle in which the sensors move).
iii) [tj + δt2, tj+1]: In this cycle, the objective is to maintain
connectivity and send information from the target to destina-
tion point. Therefore, the target has to be in the sensing range
of the monitoring sensor.
A sufficient condition is given next, which guarantees the

target remains in the sensing range of the monitoring sensor.
Assume the target is detected by the monitoring sensor at
time tj , and let the target position at times tj and tj+1

be denoted by PT (tj) and PT (tj+1), respectively. Moreover,
denote the position of the monitoring sensor in the first and
third execution cycles by PM (tj) and PM (tj+1), respectively,
and define Ω(tj) = maxtj≤t≤tj+1

‖PT (t)− PT (tj)‖, and let
the actual sensing range of each sensor be denoted by Rs,act.
Then, the target is guaranteed to stay within the sensing range
in the last cycle provided the sensing radius Rs is chosen less
than every sensor’s actual sensing range Rs,act. Furthermore,
the inequality

‖PT (t́)− PM (tj+1)‖ ≤ Rs,act (21)

Needs to be satisfied for all t́ ∈ [tj+δt2, tj+1]. Now, it results
from the triangle inequality that:

‖PT (t́)−PM (tj+1)‖ ≤ ‖PT (tj)−PM (tj+1)‖+‖PT (t́)−PT (tj)‖
(22)



On the other hand:

‖PT (tj)− PM (tj+1)‖ ≤ Rs (23)

‖PT (t́)− PT (tj)‖ ≤ Ω(tj) (24)

It follows from the above inequalities that (21) holds if:

Ω(tj) ≤ Rs,act −Rs (25)

Let the maximum speed of the target in the time interval
[tj , tj+1] be denoted by v(tj). One can verify that (25) holds
if:

ΔTv(tj) ≤ Rs,act −Rs (26)

In order for the condition in (26) to be satisfied for a faster
target, Rs (which is a design parameter) should be sufficiently
small. This, however, can reduce the efficiency of the moni-
toring sensor.

Remark 8. It is worth mentioning that the proposed algorithm
is a greedy optimization approach, which provides a near-
optimal solution at each time step. Solving the problem over
multiple time steps is a very challenging problem, and can
be considered as a future work for a given target movement
model. Also, although the proposed algorithm provides a
near-optimal solution at each time step independently, its
performance is investigated over the lifetime of the network
(multiple time steps) in the next section.

V. SIMULATION RESULTS

Example 1. Consider 20 identical sensors randomly de-
ployed in a 30m × 30m field. It is desired to monitor a moving
target and route its information to the destination point. Let
the field be represented by a 2D plane with the destination
point located at the origin. Suppose that the communication
and sensing radii of each sensor are 10m and 3m, respectively.
Let also the energy required for a sensor at point Pi to
communicate with another sensor at point Pj be equal to
ωc(Pi, Pj) = μ[d(Pi, Pj)]

λ, where λ is a given constant.
Furthermore, the energy required for a sensor at point Pi to
sense the target at PT is equal to ωs(PT , Pj) = ζ[d(PT , Pj)]

γ ,
for a given constant γ. Assume also that the energy a sensor
consumes to move from the point Pi to Pj is equal to
βd̄(Pi, Pj), where d̄(Pi, Pj) is the smallest distance a sensor
at Pi should move to reach Pj , and β is a given constant. It is
important to note that in the presence of obstacles, d̄(Pi, Pj)
is not necessarily the Euclidean distance between Pi and Pj .
Let θ be chosen as 0.15, which yields k > 21.43 (according
to Theorem 3).

Remark 9. The size of the field and the number of sensors
considered in the simulations here are close to those used in the
literature (e.g., see [38], [39], [40], [41], [42]). In addition, the
sensing and communication ranges considered in this section
are comparable with those considered in [43], [38] (6m and
20m, respectively), and other sensor prototypes such as Smart
Dust, CTOS dust, and Wins (Rockwell) [44].

Partition the field into a 30 × 30 grid, and let the target
move either one meter forward/backward randomly along each

axis or stay still at each time step (the length of this time step
is considered to be inversely proportional to the speed of the
target). The target is assumed to stay in the field at all times,
and if it reaches the boundary of the field, its direction will
change such that the boundary is not crossed. Let also the
system parameters be μ = 10−3, ζ = 10−3, β = 7.54, λ = 2,
and γ = 2. The candidate location of every sensor along with
the desired route is determined by using Algorithm 1.

Scenario 1:
In this scenario, it is assumed that there is no obstacle in the

field. Figs. 7(a), (b), (c) demonstrate the route and candidate
locations of the sensors at three different time instants, using
the proposed algorithm. In each snapshot, the location of the
target and sensors as well as the shortest path in the con-
structed energy consumption digraph are depicted. The current
location of the sensors are shown by asterisks, while their
calculated candidate locations to move to are depicted by small
circles. The location of the target is shown by a square, and the
shortest path is indicated by blue segments. Furthermore, green
lines show the movement of the sensors from their current
locations to the candidate points, in case they should move.
Under the proposed algorithm, the nearest sensors to the path
nodes in the sense of Euclidean distance are not necessarily
assigned to those nodes (see Fig. 7(a), (c)). Also, it can be
observed from this figure that the proposed algorithm does not
necessarily provide the shortest possible communication route.
This is due to the fact that the algorithm tends to employ those
sensors that have higher residual energies.

Remark 10. Simulation results show that for different network
settings with different number of sensors and specifications, in
most cases the shortest path in the proposed algorithm is either
a good path or a perfect path, which according to Theorem 3
is θ-optimal as well.

The Proposed strategy is now compared with the algo-
rithm provided in [15], which minimizes the overall energy
consumption of a sensor network. This algorithm is applied
to the above network setting, and the energy consumption
of every sensor is depicted in Fig. 8 along with the energy
consumption curves obtained by using the method developed
in the present work. This figure shows that the proposed
algorithm outperforms the one given in [15] in terms of
network lifetime. More precisely, the algorithm in [15] iterates
459 times before the first sensor runs out of energy, while
no sensor dies before 1450th iteration under the proposed
algorithm. Since the algorithm introduced in the present work
takes the remaining energy of the sensors into consideration
(which means a sensor with more energy would be more
likely to transmit information), the amount of energy of every
sensor is more or less the same throughout the operation of the
network. Furthermore, the tracking sensor in [15] can remain
unchanged for a relatively long period of time (specially if
the target moves slowly) but under the proposed algorithm
this sensor can change frequently if it depletes large amount
of energy abruptly in order to monitor the target.

Scenario 2:
Assume now that there are two obstacles in the field.
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Fig. 7: Three snapshots of the sensors and target in the first scenario of Example 1. Blue segments indicate the energy-efficient routes under the proposed
algorithm, while the green lines demonstrate the movement of the sensors from their current locations to the candidate points in case they should move.
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Fig. 8: The energy of sensors during the operation of the network in the first scenario of Example 1, using: (a) the tracking algorithm of [15], and (b) the
proposed algorithm.

Using Algorithm 1, the results shown in Fig. 9 are obtained,
analogously to Fig. 7. To assess the performance of the
proposed technique in the presence of obstacles, the results
will be compared with those obtained by using the algorithm
in [16], which minimizes the overall energy consumption of
a sensor network with obstacles. Figs. 10 (a) and (b) depict
the remaining energy of every sensor v.s. iteration number
under the algorithm given in [16] and the one provided in this
work, respectively. These figures show that under the algorithm
introduced in this work, the network operates 69% longer
than that under the algorithm in [16]. They also show that
the consumption of energy across the nodes is more balanced
under the proposed algorithm, which further demonstrates the
efficiency of the method.

Remark 11. If the target moves smoothly in the field, then
under the technique proposed in [15] the tracking sensor does
not change frequently, as it continues to be the nearest sensor
to the target. As a result, the tracking sensor in [15] runs out of
energy relatively fast. However, since in the method proposed
here the EC-nearest sensor to the target is defined based on
the residual energy of sensors, the monitoring sensor can be
reassigned. This prevents the sensor from depleting its energy
fast.

Scenario 3: In this last scenario, the same setting of
scenario 2 is considered with different types of obstacles to
verify the performance of the algorithm. Fig. 11 shows three
snapshots of the network, which demonstrate the effectiveness
of the proposed algorithm in tracking the target in this case. As
in the previous scenario, the proposed algorithm is compared
with the one in [16] by simulations. Figs. 12 (a) and (b) show
the remaining energy of the sensors under both algorithms.
It can be observed from these figures that the proposed
algorithm demonstrates superior performance, as the balanced
energy consumption increases the lifetime of the network
substantially.
Example 2. In this example, the proposed technique is

compared with the strategy given in [45], where a set of mobile
sensors operate collaboratively to transmit information from
multiple sources (whose locations are fixed) to a designated
sink. Also, the energy consumption of sensors in [45] is due
to both communication and movement. For this comparison,
12 sensors are considered with an initial energy of 800J
each, and all other parameters are assumed to be the same
as those in scenario 1 of Example 1. It is worth mentioning
that to compare these two algorithms, it is required to solve
the problem using the method in [45], then after relocating
the sensors and calculating their residual energies and also
considering the new location of the target, the problem must
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Fig. 9: Three snapshots of the network configuration obtained by using the proposed technique in the second scenario of Example 1.
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Fig. 10: The energy of sensors during the operation of the network in the second scenario of Example 1, using: (a) the tracking algorithm of [16], and (b)
the proposed algorithm.

be solved using the same algorithm again (in other words, the
method in [45] is used to monitor a moving source or target).
Figs. 13(a) and (b) demonstrate the results obtained by using
the technique in [45] and the ones obtained by the proposed
strategy, respectively. These figures show that the proposed
method outperforms the one in [45] significantly in terms of
network lifetime (the iteration time intervals are the same in
both methods). In addition to the superiority of the proposed
method in terms of network lifetime, it also has some other
important advantages compared to [45]. For example, unlike
the method in [45], the present technique does not assume
that the communication graph remains fixed while the sensors
move. Furthermore, the execution time of the proposed method
is faster (because unlike the algorithm in [45] there is no nested
loop in the algorithm here). Finally, the method in this work is
developed in general for an environment with obstacles while
that in [45] is only for an environment without obstacles.

VI. CONCLUSIONS

A novel relocation technique is proposed that simulta-
neously prolongs the lifetime of a mobile sensor network
deployed to monitor a moving target in a field with possible
obstacles. The methodology involves a digraph that is con-
structed by mapping the field into a grid. The vertices of
the digraph are the grid nodes, and its edges are weighted

based on the remaining energy of sensors. Using this digraph,
the lifetime maximization problem is addressed by solving
a sequence of shortest path problems. Detailed simulations
demonstrate the effectiveness of the proposed strategy in
finding the best locations for the mobile sensors at different
points in time, as well as the best route to transmit the target
information. Solving the investigated problem over multiple
time-steps based on a realistic model for target motion can
be considered as a natural extension of this work. Also, it is
conjectured that adaptive sensing and communication range
based on the remaining energy of each sensor can have a
significant impact on the network lifetime. The authors plan
to study this impact in the future.
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