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Reconstruction of Sub-Surface Velocities from

Satellite Observations Using Iterative

Self-Organizing Maps

Christopher Chapman and Anastase Alexandre Charantonis

Abstract—A new method based on modified self-

organizing maps is presented for the reconstruction of

deep ocean current velocities from surface information

provided by satellites. This method takes advantage of

local correlations in the data-space to improve the accu-

racy of the reconstructed deep velocities. No assumptions

regarding the structure of the water column, nor the

underlying dynamics of the flow field, are made. Using

satellite observations of surface velocity, sea-surface height

and sea-surface temperature, as well as observations of

the deep current velocity from autonomous Argo floats to

train the map, we are able to reconstruct realistic high–

resolution velocity fields at a depth of 1000m. Validation

reveals promising results, with a speed root mean squared

error of ∼2.8cm.s−1, more than a factor of two smaller

than competing methods, and direction errors consistently

smaller than 30◦. Finally, we discuss the merits and

shortcomings of this methodology.

Index Terms—Oceans,Remote sensing,Self-organizing

feature maps

I. INTRODUCTION

S
UBSURFACE observations of the world’s

ocean, particularly of climatically interesting

fields such as the velocity of ocean currents, are

generally sparse both temporally and spatially. De-

spite recent attempts to improve ocean observing

networks, our ability to directly measure oceanic

properties at depth is still limited. The lack of

long-term data with broad spatio–temporal coverage

impedes our ability to make robust inferences about

changes in the climate system.

In contrast, since the early 1980s, quasi-global

measurements from satellites have enabled near
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continuous measurement of the global ocean’s sur-

face. In particular, observations of the sea-surface

height anomaly (which enables direct measurement

of the surface geostrophic velocity) from altimeters,

and observations of the sea-surface temperature

from radiometers and infrared sensors have revolu-

tionized the understanding of the ocean’s dynamics.

These observations have revealed that the ocean is

rich in flow features of varying spatial and temporal

scales [1]. We illustrate the difference in the spatial

coverage between surface and deep measurements

in Fig. 1, which shows the velocity from satellite

altimetry (shaded contours/black vectors) and at

approximately 1000m depth from Argo floats (red

vectors) in the South Indian Ocean on the 17th

of April, 2009. It is clear that the satellite data

provide broad spatial coverage of the region while

the measurements at depth are scattered. This gap in

coverage has lead to numerous efforts to reconstruct

sub-surface quantities from high-resolution satellite

data.

Attempts to reconstruct the deep flow from sur-

face observations fall into two different categories:

‘statistical” or “dynamical” methods. “Statistical”

methods take advantage of empirical relationships

between surface and subsurface quantities to re-

construct the subsurface fields, subject to the as-

sumptions that these relationships are static in time

and that the vertical structure of the water column

can be represented as a simple function of depth

[2], [3]. “Dynamical” methodologies combine the

equations of fluid motion with surface information

from satellites to estimate the sub-surface fields [4],

[5]. However, dynamical reconstructions require the

basic stratification of the ocean to be slowly varying

in space and tend to smooth out important small

scale flow structures.

Recently, machine-learning methods have been

proposed for similar problems [6], [7], [8]. These
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Fig. 1: Current velocity at the surface from the

AVISO satellite product (shaded contours and black

vectors) and near 1000m depth from the Argo floats

(solid red vectors) in the South Indian Ocean on the

17th of April, 2009. The location of this region is

indicated in the inset box. The solid contour line

indicates the 1000m depth contour.

methods have several advantages over the tradi-

tional methods described above: the relationships

between surface and sub-surface quantities can vary

in space and time; it is not necessary to make

any assumptions about the vertical structure of the

water column; and non-linear relationships can be

extracted from the data.

In this letter, we tackle the problem of recon-

structing sub-surface velocities from surface data

using a self-organizing maps, based on previous

work by Charontonis et al. [8]. We restrict our

attention to the Southern Ocean, the region that

encircles the Antarctic continent, between 65◦S and

35◦S, as it hosts a complex flow field that presents a

challenge for reconstruction schemes, and as it one

of most data sparse ocean basins. Hence, a robust

reconstruction of the deep flow from satellite data

in this region could be of immense benefit to the

oceanographic community.

II. DATA AND METHODOLOGY

A. Data

The data used in this study consists of surface

data that are used as predictors, and sub-surface

measurements of current speed that are used to train

the SOM and for validation.

1) Surface Data: The altimeteric data used in

this study is obtained from the Archiving, Valida-

tion, and Interpretation of Satellite Oceanographic

data (AVISO) daily gridded absolute dynamic to-

pography (ADT) (http://www.aviso.altimetry.fr/), a

“level 4” product. We use ADT for the 5 year

period 2005–2011, mapped to a 1/4 degree Mercator

grid using optimal interpolation of along-track data

series. This dataset provides estimates of both the

sea-surface height and velocity. An example of the

surface velocity from this dataset is shown in Fig.

1.

The sea–surface temperature (SST) data used are

daily averages of Version 2 of the NOAA combined

AVHRR-AMSR optimally interpolated SST prod-

uct (https://www.ncdc.noaa.gov/oisst)[9]. The com-

bined use of infrared and microwave instruments in

cloud-free regions reduces systematic biases as the

errors of each sensor are independent.

2) Sub-Surface Velocity Data: In order to esti-

mate the ocean current velocity at depth, we use the

velocity data provided by autonomous Lagrangian

drifters called Argo floats [10]. After deployment,

Argo floats descend to a pre–programmed “parking”

depth (generally 1000m) where they drift with the

current for approximately 10 days, then ascend to

the surface (taking a profile of temperature and

salinity) and transmit their location via satellite. The

floats then re-descend to their parking depth and

repeat the cycle. With knowledge of the time be-

tween each resurfacing, and the surfacing locations,

the parking depth velocity can be estimated.

In this study, we use the ANDRO data

set (http://www.umr-lops.fr/Donnees/ANDRO) [11].

This dataset provides estimates of the current veloc-

ity at the float parking depth between 2005 and 2011

and covers the entire ocean north of about 65◦S.

There are 122,174 independent data records in the

dataset and errors due to the delay between the float

surfacing and the satellite location fix and vertical

shear in the water column are estimated to be small.

We use only floats with parking depths within 50m

of 1000m, as there are sufficient floats at this depth

to enable broad geographical coverage. The number

of floats at parking depths different from 1000m is

much more limited.
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B. Methodology

Self-Organizing Maps are a neuronal network

classification algorithm that incorporate a topolog-

ical structure on a 2D lattice [12]. Each class is

represented by an index, c, and a reference vector,

ref
c
∈ R

D, in the data space. ref
c is (approxi-

mately) the mean of all training data assigned to

that class. The reference vectors of two neighboring

classes on the 2D lattice are, by construction, close

in data space. A practical guide to the application of

SOM in oceanography is given by Liu et al. 2006

[13].

After the initial training, the SOM map can be

used to reconstruct “missing” data (in our case, the

deep current velocities) from available data. This is

generally accomplished by matching to input data

(with missing values) to a class by finding the

closest reference vector in a Euclidian sense, i.e has

the smallest distance:

dT =

[

D
∑

i∈avail.

(xi − ref c
i )

2

]1/2

(1)

where x ∈ R
D is input data vector with missing

values and dT is the truncated distance, as the

sum is performed only over the dimensions with

available data. The missing values are then “filled”

by extracting the corresponding dimensions from

the reference vector of the best matching class.

However, due to local correlations in the data space,

the pertinence of each parameter to the retrieval of a

missing parameter’s value varies throughout the data

space. To improve the reconstruction, we follow

Charantonis et al. [8] and introduce a similarity

function, s
c, that weights the truncated distance

according to the correlation between the missing

data variable (here the deep velocity) and available

(surface) data. The modified distance is given by:

dcE(x, ref
c) =

∑

i∈avail.

(

1 +
∑

j∈missing

(

corcij
)

2

)

. . .

× (xi − ref c
i )

2 , (2)

where corci,j is the correlation matrix between the

missing and available variables, computed over the

all data attributed to the class c during training. The

first term is the similarity function that weights the

distance by the correlations between the variables

in the input data vector, while the second term

is simply the truncated distance. As an example,
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Fig. 2: Schematic of our methodology. On the left,

we the training the SOM, which maps the training

data to a discreet set of classes. Each class con-

tains a reference vector that approximates the mean

value of the data assigned to it. On the right, the

reconstruction: the available (surface) components

are projected via a similarity function onto the SOM

and the missing (deep) values are extracted from

reference vector of the best-matching class.

imagine for a particular class, the “missing” deep

currents were found to be highly correlated with

the ADT and uncorrelated with SST. In this case,

the ADT would be more influential when finding

the class that best matches the input data. We find

that the similarity function significantly improve

the classification of the input data, and hence the

reconstruction of the deep velocities.

A Matlab implementation our method is available

as free software on the author’s GitHub account.

III. RECONSTRUCTION OF DEEP VELOCITIES

FROM SATELLITE DATA

A. Validation and Errors

The SOM methodology is now applied to the

problem of reconstructing velocity fields at depth

from the satellite observations described in section

II. To train the map, we use the altimetrically de-

rived surface velocity and dynamic height, the SST,

and the deep velocity obtained from the Argo floats

as well as the latitude and longitude of each deep

observation. Surface data is co–located at the sub-

surface data locations by linear interpolation. 80%
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Fig. 3: The reconstructed versus observed zonal

(a) and meridional (b) velocities over the Southern

Ocean at 1000m. The red dashed line indicates the

“perfect” reconstruction. R2 values for each series

are indicated.

of this data-set, (97,739 data records), is selected by

random sampling and used to train the SOM. The

remaining 20% (24,435 records) are retained for

validation. The results of any SOM computation are

sensitive to parameters in the training phase, such as

the number of classes and the neighborhood radius

[13]. After testing numerous parameter values, we

have settled on using 2500 classes and initial and

final neighborhood radii of 6 and 0.1, respectively.

These values provide a good compromise between

performance and computational expense.

The validation of the method is shown in Fig. 3.

It is evident from this figure that our results are

very promising. The coefficient of determination,

R2, for each velocity component is above 0.95, and

the speed RMSE is 2.8cm.s−1, more than a factor

of 2 smaller than those obtained by Meijers et al.

[3] and a factor of 3 smaller than those obtained

from dynamical methods (eg. Isern–Fontenet et al

[4]). For comparison with the internal variably, we

note that the standard deviation of the deep current

speed over the study domain is 4.8cm/s. To ensure

that our method is not subject to overfitting, that is

that our method ‘fits’ random noise in the training

data and thus is unable to generalize to new data, we

also validate against the training data. We obtain a

speed RMSE of 2.6cm.s−1, sufficiently close to the

RMSE obtained from the validation data that we can

rule out overfitting. We note that using the SOM

methodology on its own, without the correction

described by Eqn. 2, gives inferior results, with

RMSEs of ∼7.5cm.s−1 and R2 =∼0.6.
We investigate the spatial distribution of the

errors in both the current speed and direction,

the latter quantified by the bearing angle θ =
tan−1 (v/u), by determining the error at the location

of each deep velocity observation in the validation

dataset, then interpolating the results to a regular

latitude/longitude grid (not shown). Similarly to

Meijers et al [3], we find elevated errors in current

speed downstream of large sub–surface topography.

Additionally, ǫspeed correlates with regions of both

high variance of both ADT and deep currents, sug-

gestive of more intense meso-scale turbulence fields.

The increasing error in highly turbulent regions indi-

cates a decoupling of the surface and deep flow that

may limit the effectiveness of the reconstruction. In

contrast, errors in the bearing angle appear to be

distributed quasi–randomly. We note that more than

85% of bearing angle errors are less that 30◦, with a

mean absolute error of 18◦ and no clear directional

bias.

B. Reconstruction of Deep Southern Ocean Cur-

rents

We now apply our method to each of the daily

output maps in the AVISO and OISST databases,

between 2005 and 2011 to obtain 5 years of daily

current velocities (1826 snapshots) at 1000m on a

regular latitude/longitude grid with 1/4◦ grid spac-

ing. Grid points with fewer than 10 deep velocity

observations within 150km (typically south of 65◦S)

are masked. These data are freely available from the

Dryad data repository (datadryad.org).
Fig. 4 shows the reconstructed time mean current

speed for the year 2009. Our reconstructed currents

display realistic behavior such as self-organisation

into complicated small–scale (O(10–20km)) “jets”

(e.g. south of Africa between 20◦E and 50◦E),

steering by subsurface topography (e.g. south of

New Zealand between 170◦E and 170◦W) and west-

ern boundary currents (e.g. along the east coast of

Australia and South America).
Our reconstructed deep velocity maps show simi-

lar features to the satGEM reconstruction of Meijers

et al. [3]. However, there are some notable quali-

tative differences between the two reconstructions.
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Fig. 4: The time mean reconstructed current speed

at 1000m depth forthe year 2009.

Most notably, we find that our reconstructed cur-

rents are generally slower than the satGEM product,

locally by as much 20%.

IV. DISCUSSION AND CONCLUSIONS

In this letter, we have used a machine-learning

technique to reconstruct the velocity of ocean cur-

rents at 1000m depth from satellite observations.

Our results yield errors that are 2 to 3 times smaller

than competing methods. We are able to use this

method to reconstruct realistic maps of deep cur-

rents with high temporal and spatial resolution.

Our methodology has several shortcomings. Most

notably, to train the SOM we require velocity in-

formation at depth. While we have been able to

exploit the near global coverage provided by Argo

floats at 1000m, velocity data are more limited at

other depths [11], which reduces our ability to apply

this method more generally. The satGEM dataset of

Meijers et al. [3] and dynamical methods [4] are

not limited by the availability of deep velocity data

and can provide reconstructions at any depth. How-

ever, despite these shortcomings, our method has

numerous potential applications beyond the obvious

extension to other quantities, such as temperature

or salinity. This method could be used for real-time

for data-assimilation into predictive ocean models,

or for validating numerical models in data-sparse

regions.
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