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Collision Avoidance and Stabilization for

Autonomous Vehicles in Emergency Scenarios
Joseph Funke, Matthew Brown, Stephen M. Erlien, and J. Christian Gerdes

Abstract—Emergency scenarios may necessitate autonomous
vehicle maneuvers up to their handling limits in order to
avoid collisions. In these scenarios, vehicle stabilization becomes
important to ensure the vehicle does not lose control. However,
stabilization actions may conflict with those necessary for collision
avoidance, potentially leading to a collision. This paper presents
a new control structure that integrates path tracking, vehicle
stabilization, and collision avoidance and mediates among these
sometimes conflicting objectives by prioritizing collision avoid-
ance. It can even temporarily violate vehicle stabilization criteria
if needed to avoid a collision. The framework is implemented
using model predictive and feedback controllers. Incorporating
tire nonlinearities into the model allows the controller to use all
of the vehicle’s performance capability to meet the objectives.
A prediction horizon comprised of variable length time steps
integrates the different time scales associated with stabilization
and collision avoidance. Experimental data from an autonomous
vehicle demonstrates the controller safely driving at the vehicle’s
handling limits and avoiding an obstacle suddenly introduced in
the middle of a turn.

I. INTRODUCTION

A
S autonomous vehicles leave the research laboratory and

enter public roads, they must react to emergency scenar-

ios, some of which may necessitate maneuvering up to the

vehicle’s handling limits in order to avoid a collision. Vehicle

stabilization becomes increasingly important when operating

near these handling limits as it modifies inputs to the vehicle to

ensure that it does not lose control. Yet, enforcing stabilization

criteria does not necessarily assist collision avoidance and may

conflict with the demands of the desired trajectory.

Autonomous vehicle control is commonly divided into tra-

jectory generation and trajectory following. Trajectory gener-

ation algorithms, such as those used in the top DARPA Urban

Challenge finishers Boss and Junior, often assumed vehicle

operation below the handling limits, which facilitates using

simple trajectory following algorithms [1], [2]. Similar as-

sumptions continue to be incorporated in more recent research

with Junior and other vehicles such as Bertha [3], [4]. In an

emergency situation, these approaches rely on built-in pro-

duction stabilization systems such as ESC [5], which enforce

stabilization criteria regardless of an impending collision. Thus

while these approaches may generate a collision free trajectory,

it becomes unclear whether the control actions modified by the

underlying ESC systems lead to a collision free trajectory for

the actual vehicle.
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Alternative approaches have explicitly incorporated stabi-

lization into trajectory tracking using model predictive control

(MPC) techniques. MPC provides a framework that can re-

place a simple path tracking control law with a continuously

re-solved optimization seeking to minimize path tracking er-

rors within constraints such as stabilization criteria. Falcone et

al. [6] tracked a lane change trajectory on an icy road by lim-

iting vehicle states to a linear regime of tire force generation.

Katriniok et al. [7] similarly tracked a lane change trajectory,

but extended the stabilization criteria to incorporate nonlinear

vehicle dynamics as well, increasing allowable control actions

to track a trajectory. Such MPC trajectory tracking algorithms

can be paired with trajectory generation algorithms to offer

a complete guidance system. Falcone et al. [8] and Gao et

al. [9] suggest hierarchical frameworks in which a high-level

MPC algorithm communicates obstacle avoidance trajectories

to a low-level MPC algorithm focused on trajectory tracking.

While these approaches directly incorporate stabilization

rather than relying on production ESC systems, they still suffer

from the underlying challenge that stabilization constraints

may lead to tracking errors that could result in a collision. The

impact of stabilization control actions is thus relevant to both

the trajectory following and trajectory generation processes.

To better capture these impacts of stabilization, trajectory

generation and tracking can be combined into one control

problem. Adding collision constraints to the MPC algorithm

allows the controller to modify control inputs in order to

avoid a collision. Liniger et al. [10] demonstrated time optimal

trajectory generation and tracking around a race track with

other vehicles, without explicit stabilization constraints, for

remote control vehicle racing. Gao et al. [11] and Turri et

al. [12] demonstrated obstacle avoidance on a straight icy

road using full sized vehicles and stability bounds designed

to limit vehicle states to the linear regime of tire force

generation. However, such bounds may be overly restrictive

in emergencies that require all of the tires’ force generation

capability to avoid a collision.

We similarly introduce an integrated trajectory generation

and tracking approach, but with two improvements. First,

stabilization limits are extended into the nonlinear operating

regime of the vehicle, allowing vehicle operation up to the

handling limits. Incorporation of nonlinear dynamics is possi-

ble with a careful linearization, regulation, and trust region

modeling approach of rear tire force generation. Second,

varied length time steps in the prediction horizon of the MPC

optimization enables better integration of stabilization and

collision avoidance in a single problem. Short time steps model

immediate vehicle stabilization and tracking decisions while
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long time steps later in the horizon incorporate the future

implications of those actions for collision avoidance. These

improvements allow a fundamental shift in how stabilization

is incorporated into autonomous vehicle control. Instead of

prioritizing stabilization highest, either implicitly with ESC

systems or explicitly with stabilization constraints, this ap-

proach prioritizes collision avoidance above stabilization. This

allows the system to temporarily violate stabilization criteria,

if necessary, in order to avoid a collision. These temporary

violations are planned along with subsequent control inputs

throughout the prediction horizon that can return vehicle states

to within the desired bounds.

The resulting approach builds off of Erlien et al.’s human-

shared controller [13] and Brown et al.’s subsequent path

tracking controller [14] with an autonomous trajectory tracking

controller that follows desired speeds while deviating from

desired paths to best meet collision avoidance and stabilization

criteria. This paper extends initial results [15] with a closer

look at model linearization, the variable time step prediction

horizon and prioritization of objectives and with a more

illustrative set of experiments. Three experiments demon-

strate controller performance up to the handling limits of a

real vehicle. Unlike previous work considering transient lane

change maneuvers on straight roads, these experiments test

on curved paths with steady state operation near the handling

limits, a first for MPC control to the authors’ knowledge.

The first test is obstacle free to demonstrate the controller

driving safely and smoothly near the limits. The second

test introduces a known obstacle in the middle of the turn,

showcasing the controller’s ability to account for this future

information. In the third test, an obstacle suddenly appears

mid-turn, triggering the controller’s immediate response and

temporary stability constraint violation to avoid a collision.

This last example demonstrates that collision avoidance can

sometimes be aided by temporarily violating stability criteria,

which is a fundamental departure from traditional approaches.

Section II introduces the overall structure of the controller and

how the following Sections III-VII relate to that structure, and

Section VIII provides these experimental results.

II. OVERVIEW OF OPERATION

The controller determines steering commands that best

mediate among sometimes conflicting demands to track a

nominal path, ensure vehicle stability, and avoid collisions. To

effectively trade-off among these objectives, current steering

decisions must be informed by the upcoming environment and

estimates of future vehicle dynamics. A prediction horizon

incorporates this future information at discrete times into the

future. Fig. 1 shows an example of a vehicle’s current position,

an obstacle in its path, and its plan around the obstacle through

this prediction horizon.

A model of the vehicle estimates how steering inputs

translate to future vehicle states pertaining to path tracking,

stabilization, and collision avoidance at each point in the

prediction horizon. With this model, a model predictive control

(MPC) approach calculates vehicle inputs throughout the pre-

diction horizon that optimize objectives subject to this model
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Fig. 1. Vehicle positions over a prediction horizon. The vehicle is currently
positioned at (0,0), and the controller determines planned vehicle positions
for each future discrete step in the prediction horizon, here deviating from
the path to avoid the upcoming obstacle.

and constraints such as stabilization and avoidance. To achieve

real-time responses, formulating the problem with a quadratic

objective function and time-varying affine constraints enables

the use of fast quadratic program (QP) solvers. The resulting

generic MPC problem is as follows:

min
u

n−1
∑

k=0

(

xk
T

Qkxk + uk
T

Rkuk
)

+ xn
T

Qnxn (1)

subject to

xk+1 = Akxk +Bkuk + Ck k = 0 . . . n− 1 (2)

W kuk ≤ Zk k = 0 . . . n− 1 (3)

Hkxk ≤ Gk k = 1 . . . n (4)

where vehicle states x and vehicle input u are defined at

each discrete time step k in the prediction horizon. The

solution to this optimization is defined as u∗, which by (2)

defines associated vehicle states x∗. Every execution step,

which occurs at 10ms intervals, the controller re-solves this

optimization and applies u∗0 to the vehicle, each time with a

horizon shifted 10ms to reflect the time that has passed since

the last execution step. This approach is known as receding

horizon control.

The following sections describe the formulation of the

above problem in detail. Section III introduces the structure

of a desired trajectory, which is subsequently incorporated

into the vehicle state x to enable path tracking. Section

IV discusses the linearization of nonlinear vehicle dynamics

into an affine time-varying model such as (2). Linearizations

rely on estimates of expected states, x̄, which derive from

either longitudinal control or the previous execution step’s

solution u∗prev and resulting states x∗prev. Using the previous

solution to aid in linearization of the next leads to a successive

linearization approach to modeling nonlinear dynamics, as

previously incorporated in both online [6] and offline [16]

optimizations. Trust regions on the linearizations prevent the

linearizations from becoming excessively inaccurate, leading
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to constraints on allowable states (4). Collision avoidance and

stabilization criteria impose further constraints on x through

(4), as discussed in Section V. Section VI introduces variable

length time steps, which enable unequal sample times for the

n points in the horizon to best include information necessary

for both stabilization and collision avoidance. Section VII

defines the final MPC problem, discusses how prioritizations

are established, and introduces a simple longitudinal controller.

III. TRAJECTORY

Trajectories define the path and speed for the autonomous

vehicle to follow in the absence of stability and environment

constraints. This controller incorporates trajectories defined in

terms of a path and speed profile.

A. Path

The path provides a nominal route for the vehicle to follow

and a reference for the vehicle model and environmental

bounds. Paths are parameterized by curvature K as a function

of distance s along the path. Given a starting East/North

position (E0, N0) and heading orientation ψ0, the position and

tangent direction along the path can be calculated as a function

of curvature and path distance:

ψ(s) =

∫ s

0

K(x)dx+ ψ0 (5)

E(s) =

∫ s

0

cosψ(x)dx+ E0 (6)

N(s) =

∫ s

0

sinψ(x)dx+N0 (7)

B. Speed Profile

The speed profile defines the desired vehicle longitudinal

velocity Ux,des at each point s along the path. Trade-offs

between collision avoidance and stabilization become most

apparent when tracking a path near the handling limits of the

vehicle; a speed profile can be defined in terms of these limits.

Handling limits are derived from the available road-tire

friction µ, which limits a vehicle’s lateral acceleration ay and

longitudinal acceleration ax to
√

a2x + a2y ≤ µg (8)

where g is the gravitational constant. Lateral acceleration

relates to path curvature K using a steady-state assumption,

ay ≈ U2
xK (9)

limiting the speed along a path. Given a desired friction usage

µdes, previous work presents an algorithm based on (8) and

(9) to determine speeds along the path that yield the desired

vehicle accelerations of µdesg [17].

C. Usage

The experiments use a single path, shown in Fig. 2a, which

is parameterized by the curvature depicted in Fig. 2b. Setting

µdes = 0.9µ ≈ 0.765 creates a speed profile near the handling

limits of the vehicle, shown in Fig. 2c with a 18m/s max speed.

Experiments use this static trajectory example to demonstrate

the capabilities of the controller, but trajectories could just as

easily derive from an online trajectory generator.
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Fig. 2. Trajectory (a) path, (b) curvature, and (c) speed profile. Path curvature
dictates path shape and bounds possible speeds.

IV. VEHICLE MODEL

The MPC optimization solves for optimal front tire forces

as the input u in (1) that achieve the desired trade-off

among collision avoidance, stabilization, and path tracking.

This optimization is based on predictions from a five state

bicycle model representation of the vehicle, introduced as

(2). The first two vehicle states and associated tire models

relate to vehicle stabilization, while the last three path states

relate to path tracking and collision avoidance. Linearizing the

governing equations about predicted operating points produces

an affine time-varying vehicle model amenable to real-time

implementation.

A. Vehicle States

The planar bicycle model used to represent the vehicle,

shown in Fig. 3, utilizes small angle assumptions and the

approximation that the tires on each axle can be lumped

together. Assuming a given longitudinal velocity Ux, the

vehicle’s velocity states are lateral velocity Uy and yaw rate

r, which are described by the governing equations

U̇y =
Fyf + Fyr

m
− rUx ṙ =

aFyf − bFyr

Izz
(10)

where Fyf and Fyr are front and rear tire forces, m is the

vehicle’s mass, Izz is the vehicle’s moment of inertia, and a
and b are distances from the vehicle’s center of gravity to the

front and rear axles respectively.

Vehicle side slip angle, β ≈ Uy/Ux, is sometimes used

instead of lateral velocity Uy because it offers a more intuitive
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Fig. 3. Bicycle model schematic. Uy and r represent vehicle velocity states,
and ∆ψ, e, and s relate the vehicle to the path.

vehicle state. This is a reasonable choice when assuming

constant speed, as is done in [13], [14]; however, when

incorporating changes in speed, the derivative of β introduces

a nonconvex βU̇x/Ux term in the governing equation that is

easily avoided by instead using Uy.

B. Tire Model

Tire forces Fyf and Fyr in (10) are defined by the brush

tire model originally presented by Fiala [18] and modified by

Pacejka [19]:

Fy =



















−Cα tanα+
C2

α

3ηµFz
| tanα| tanα . . .

−
C3

α

27ηµ2F 2
z
tan3 α, |α| < αsat

−ηµFzsgn α, otherwise

(11)

= ftire (α)

where Cα and µ are experimentally determined tire cornering

stiffness and friction coefficients, Fz is the normal load, α is

the tire slip angle, and αsat is the saturating slip angle. The

tire slip angle is the angle between the tire’s orientation and

direction of travel,

αf = tan−1

(

Uy + ar

Ux

)

− δ ≈
Uy + ar

Ux

− δ (12)

αr = tan−1

(

Uy − br

Ux

)

≈
Uy − br

Ux

(13)

where δ is the steering angle. The saturating tire slip angle

is the slip angle at which additional slip angle produces no

additional force; from (11), this is defined as

αsat = tan−1

(

3ηµFz

Cα

)

(14)

Lateral tire forces as defined by (11) depend on a presumed

longitudinal force Fx. This longitudinal force is accounted for

in two ways. First, a derating factor η has been added to the

model to capture the reduced lateral force capability due to Fx.

Friction limits (8) reduce the maximum achievable lateral force
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Fig. 4. Experimental data from standard passenger vehicle tires on asphalt
(µ ≈ 0.85), and front tire model fit.

Fy for a given longitudinal force Fx. This effect is modeled

using a derating factor defined as follows:

η =

√

µ2F 2
z − F 2

x

µFz

(15)

Second, the normal load Fz on a tire varies according to a

static longitudinal weight transfer model,

Fzf =
1

L
(mbg − hFx)

Fzr =
1

L
(mag + hFx)

(16)

where L is the length of the vehicle and h is the height of the

vehicle’s center of gravity. The first term in these equations is

the static weight distribution and the second term is the effect

of accelerating or braking.

The parameters for tire cornering stiffness and road-tire

friction were experimentally determined by driving the vehicle

at a constant speed with a slowly increasing steering angle.

The resulting quasi–steady-state maneuver provides lateral

accelerations and vehicle states that can be mapped to expected

front and rear tire forces and slip angles. Fitting Cα and

µ to this data provides empirical values for these quantities

that account for otherwise unmodeled effects such as lateral

weight transfer and suspension geometry. Fig. 4 provides an

example of the resulting data and fit. In the future, these

parameters could be estimated online using techniques such

as that suggested by Hsu et al. [20].

The affine vehicle model incorporates nonlinear front and

rear tire models (11) differently. The goal with the rear

tire model is to accurately capture the nonlinear relationship

between vehicle states and rear tire force generation, which

becomes especially critical for stabilization. A combination

of regularization, linearization, and trust regions achieves this

goal.

Regularization in conjunction with a successive linearization

approach, in which predicted states are based on the previous

execution solution (x̄ = f(x∗prev)), provides predicted states

x̄ at each time step k in the prediction horizon. These states
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provide slip angle predictions ᾱr through (13) that can be

used as nominal points at which to perform linearizations of

the nonlinear tire curve (11). However, using only the previous

solution can lead to jitter across execution steps, as the fast

dynamics lead to solutions and resulting linearizations that can

oscillate about the nonlinear solution. Instead, an average of

the previous prediction ᾱr,prev and resulting solution α∗

r,prev

offers a form of regularization of predicted slip angles ᾱr that

smooths oscillation across executions:

ᾱk
r = (1− rα)ᾱ

k
r,prev + (rα)α

∗k
r,prev k = 1 . . . n (17)

A value of rα = 1/2 significantly reduces jitter while

still relying on the previous solution, which is important in

allowing the tire model to adjust over control executions to a

new plan in an emergency scenario.

Once given predicted slip angles ᾱr, linearizations of the

nonlinear tire curve can be performed. The tire curve at

step k in the prediction horizon could be linearized about

either ᾱk
r or ᾱk+1

r , but the resulting approximation becomes

excessively inaccurate near ᾱk+1
r or ᾱk

r respectively. The

linearization could alternatively be performed at the average

of ᾱk
r and ᾱk+1

r . Assuming the tire model defined in (11), this

linearization always overestimates the expected rear tire force

for the time between k and k+ 1, since the magnitude of the

second derivative of (11) decreases away from αr = 0. An

example is pictured in Fig. 5 as the linearization overestimate.

Instead, the linearization is formed as an interpolation between

ᾱk
r and ᾱk+1

r , as pictured in Fig. 5 as the linearization under-

estimate. This approach ensures accurate predictions about ᾱk
r

and ᾱk+1
r up to the force generation capabilities of the tires

but underestimates intermediate force generation for the time

between k and k+1. Some linearization error is inevitable and

becomes increasingly significant with larger differences in ᾱk
r

and ᾱk+1
r associated with longer time steps. This approach

leverages such error by tending to underestimate intermediate

forces, which in turn causes the controller to react earlier

to potential threats and stability violations and improves the

overall safety of the system.

While the chosen linearization will underestimate tire force

between k and k + 1 if slip angle predictions do not change

between control executions (i.e. α∗

r = ᾱr), the linearization

will overestimate force for solutions and corresponding slip

angles that shift away from the prediction points. This can be

seen in Fig. 5: if α∗3
r < ᾱ3

r for example, then the linearization

from k = 2 to k = 3 will overestimate F 3
yr. For this reason,

trust regions bound the vehicle states to allowable deviations

from the predictions to ensure a level of model accuracy. Trust

regions, as generally represented in (4), are defined in terms of

αr,sat and ntr so that ntr/rα control executions are necessary

to traverse the entire range of rear tire force:

ᾱk
r −

2

ntr

αr,sat ≤ α∗k
r ≤ ᾱk

r +
2

ntr
αr,sat k = 1 . . . n (18)

When an emergency occurs, the controller will require up

to ntr/rα executions to reach the final solution. The key,

however, is that during each of those steps, an accurate model

still allows the controller to determine an appropriate input,

enabling an immediate response even as the model converges.
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A value of ntr = 8 limits rear slip angle variation to 1
4
αr,sat

while ensuring the tire curve can be fully traversed within

ntr/rα = 8 · 2 = 16 executions of the controller. This totals

160ms at the 10ms sample rate.

The resulting rear tire model extends the linear slip angle

bounds (around 3◦ for the tire model in Fig. 5) often used

[6], [11], [12], to all slip angles that can generate additional

force. Katriniok et al. [7] similarly extended slip angle bounds

beyond the linear region with a local linearization approach.

However, their focus on only trajectory tracking enabled short

rather than long prediction steps and in turn linearizations of

the tire curve at individual operating points with less concern

for model propagation between steps.

The vehicle model also incorporates the front tires to enable

full tire force utilization; however, unlike the rear tire slip

angle which evolves based on vehicle states, the controller

directly controls front tire slip through the steering input. This

allows Fyf to serve directly as the input to the vehicle model.

Using Fyf as the input, rather than steering angle, allows the

optimization to choose inputs that explicitly account for the

limited capabilities of the front tires. Once calculated, a desired

Fyf can be converted to a steering angle according to (11) and

(12),

δ =
Uy + ar

Ux

− f−1
tire (Fyf) (19)

where f−1
tire represents the inverse tire curve.

C. Path States

The last three vehicle states relate the vehicle to the nominal

path. Distance along the path s, heading error between the

vehicle and path ∆ψ, and lateral error from the path e are

described by the following governing equations of motion:

∆ψ̇ = r − ṡK(s) (20)

ė = Ux sin∆ψ + Uy cos∆ψ ≈ Ux∆ψ + Uy (21)

ṡ =
Ux cos∆ψ − Uy sin∆ψ

1−K(s)e
≈

Ux

1−K(s)ē
(22)
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Approximations for ė and ṡ assume small ∆ψ and Uy. The

governing equation for ṡ also uses expected lateral error, ē,
rather than the actual lateral error e, to preserve linearity of

the equation. Expected lateral error derives from x∗prev, similar

to the slip angles used for rear tire linearization. Lateral error

is an integral of other vehicle states and does not rapidly

change between control executions like rear slip angle, so a

regularization approach like (17) is not necessary.

D. Model Linearization

The resulting vehicle model can be expressed in continuous

form with the affine expression,

ẋ = Ax+BFyf + C (23)

where x = [Uy r ∆ψ s e]
T

. Matrices A, B, and C
depend on operating points Fx, Ux, ᾱr, ē, and K(s). The

model can be discretized at individual time steps along the

prediction horizon, each with associated operating points, to

yield an affine time-varying model similar to (2). Section

VI discusses discretization of this model, since discretization

choice depends on the time steps used.

V. STABILITY AND ENVIRONMENTAL

ENVELOPES

Vehicle stabilization and collision avoidance objectives are

defined in terms of envelopes, or regions in the state space

where the vehicle state should reside.

A. Stability Envelope

This controller uses the envelope suggested by Beal and

Gerdes [21], which bounds the vehicle’s velocity states Uy

and r by the maximum steady state force generation of the

tires. Rear tire saturation defines the lateral velocity Uy limit.

Saturation occurs at the rear tire saturation slip angle (14) and

converts to a bound on Uy with (13):

Uy,max = Uxαr,sat + br (24)

This bound incorporates a rear tire slip angle limit similar

to previous work [6], [11], [12], but extends beyond the

linear regime and into the fully saturated region, allowing full

utilization of rear tire force.

An additional bound on yaw rate creates a closed set for

vehicle velocity states and is based on the maximum steady

state condition of (10). This yields a maximum sustained yaw

rate

rmax = min

(

Fyf,max(1 + a/b)

mUx

,
Fyr,max(1 + b/a)

mUx

)

(25)

where a and b are the distances from the vehicle’s center

of gravity to the front and rear axles respectively. The two

quantities in (25) encode front and rear tire saturation.

The bounds (24) and (25) define an invariant set for vehicle

velocity states Uy and r, pictured in Fig. 6. Vehicle stability

is guaranteed for all states in the envelope. Exceeding these

bounds does not necessarily result in instability, but for states

outside the envelope there is no guarantee that a control input

Lateral Velocity U
y

Y
a

w
 R

a
te

 r

Fig. 6. Stability envelope for vehicle stabilization. Bounds on the vehicle’s
velocity states Uy and r provide an invariant set that the controller seeks to
remain inside.

exists to move the system closer to the boundary in the next

time step.

The stability bounds derive from expected maximum tire

force, which is subject to a degree of uncertainty. Underesti-

mated tire force results in an overly restrictive set, preventing

the vehicle from achieving otherwise acceptable vehicle states.

Overestimated tire force leads to constraints that are not

restrictive enough. In that case, vehicle states may reach

their real limit and begin quickly growing before reaching

the constraint boundary, requiring additional control authority

to return them to within the set. With enough mismatch,

this could result in a spin. The experiments in Section VIII

demonstrate that even roughly estimated tire parameters result

in a sufficient stability envelope.

B. Environmental Envelope

Collision avoidance is modeled using an environmental

envelope as originally proposed by Erlien et al. [13]. The

environmental envelope is a set of lateral error bounds emax

and emin as a function of distance s along a path that avoids

obstacles and remains on the road. Enforcing these bounds on

the vehicle’s lateral error as follows

ek + fwidth(∆ψ
k) ≤ ekmax

ek − fwidth(∆ψ
k) ≥ ekmin

(26)

provides a convex method of enforcing environmental con-

straints on the vehicle’s position. The function fwidth(∆ψ)
linearly approximates the vehicle’s effective width as its ori-

entation from the path changes. For example, at ∆ψ = 0,

the vehicle’s effective width is half its actual width, while at

∆ψ = 90◦, the vehicle’s effective width is at least a, the

distance from the center of gravity to the front axle.

Experiments presented here rely on a virtual, predefined

set of road bounds and obstacles. Virtual obstacles offer

consistent and repeatable tests in order to validate the control

approach itself. To be functional in a real situation, the virtual

environment must be replaced by the real environment as

perceived by sensors such as radar, LIDAR, and camera, which

adds complexity. First, a real environment may offer multiple
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paths of traversal, such as passing on the left or right of an

obstacle, which must be chosen before bounds (26) can be

determined. This choice can be made prior to the problem

formulation via a higher level decision planner, or each choice

can be encoded as a separate MPC problem to be chosen

among after evaluation. Second, perceived sensor data will

be less spatially accurate and temporally consistent than a

virtual environment. Spatial inaccuracy can be accounted for

with added buffer distance between the actual and enforced

environmental bounds in (26), while temporal inconsistency

can be reduced with object tracking algorithms. Perceiving

and understanding the environment is a major field of research

itself, but once such information has been classified in terms

of road edges and obstacle locations along with a desired path

of traversal, the remainder of the control structure does not

change.

VI. VARIABLE TIME STEP DISCRETIZATION

To effectively prioritize among tracking, stabilization, and

collision avoidance, the MPC controller must optimize lateral

force inputs accounting for near term vehicle dynamics and

future collision avoidance. However, the number of discretiza-

tion points that can be evaluated in real-time is limited by

computational power. Therefore, short time steps necessary to

model vehicle dynamics result in a prediction horizon too short

to effectively incorporate future environmental information.

Instead, the prediction horizon is discretized with different

length time steps. Short time steps in the near term provide

accurate vehicle dynamics modeling for path tracking and

stabilization. Longer time steps further along the prediction

horizon extend the predictions to incorporate future obstacles

and path information while offering more approximate vehicle

dynamics modeling for tracking and stabilization.

Discretizing the prediction horizon with variable time steps

was originally suggested by Erlien et al. [13] for a shared

control framework; short time steps mapped to tracking driver

commands and long time steps encoded environment con-

straints. The same time steps are used here, with two underly-

ing modifications for fully autonomous control. Both changes

improve the match over the prediction horizon between the

MPC plan and the resulting closed-loop response. Unlike

shared control, which incorporates unknown future driver

commands, the closed-loop response of a fully autonomous

system, in the absence of disturbances and model uncer-

tainty, should match the optimized plan. Otherwise the closed-

loop performance is sub-optimal. Matching the closed-loop

response also improves model linearizations such as rear tire

force, which are based on predictions of future vehicle states.

A. Selected Time Steps

The prediction horizon consists of three components: a near

term comprised of ten Ts,short = 10ms time steps, followed

by one time-varying ‘correction’ time step Ts,corr, and finally

a far term horizon of nineteen Ts,long = 200ms time steps.

Computation time to optimize the resulting n = 30 problem on

an i7 processor approaches the 10ms available for calculation.

૚૙ �࢚࢘࢕ࢎ࢙,࢙ steps= ૙. ૚࢙ 
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� = Ͳ� � = ʹ.ʹ� 
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Fig. 7. Prediction horizon discretization assuming a speed of 10m/s, with the
time steps in gray and the spatial discretization in black. The correction time
step Ts,corr varies to maintain consistent spatial locations of the long time
steps as the vehicle moves forward.

The near term horizon provides high fidelity vehicle dy-

namics modeling necessary for path tracking and vehicle

stabilization. The controller executes at 10ms intervals, so

these 10ms time steps accurately discretize the continuous

system in the near term. The far term horizon extends the

predictions further into the future, incorporating the next 3.8s

of environmental information.

The correction time step exists between the two horizons,

varying length between Ts,short and Ts,long to maintain the

spatial location of the long time steps. Without the correction

time step, the estimated distance along the path of the long

time steps shift with each short time step, resulting in a

different spatial discretization of the environment with each

controller execution. With the correction time step, the esti-

mated positions at each long time step remain fixed, maintain-

ing a consistent environmental discretization throughout the

receding horizon. An example of the effect of the correction

time step is presented in Fig. 7.

B. Vehicle Model Discretization

Continuous dynamical models are often discretized at each

time step with a zero order hold (ZOH) approximation. A

ZOH assumes constant continuous inputs over the duration of

each discrete time step and yields a causal difference equation

that can be included as a constraint in the MPC problem. A

ZOH assumption works well for the short time steps, since

the assumed constant continuous inputs accurately reflect the

actual input to the vehicle.

A ZOH less accurately represents time steps in the far term

horizon. As the receding horizon shifts forward, the long time

steps are eventually replaced by the short time steps, and the

controller will calculate inputs at the shorter time intervals. To

address this far term modeling inaccuracy, the long time steps

are discretized with a first order hold (FOH), as suggested by

Brown et al. [14]. A FOH assumes linear variation between

time steps. This approximation provides a more accurate

interpolation of inputs and results in a better prediction of

future state propagation. Further, the FOH discretization offers

a discrete representation of linearly-varying curvature paths

such as the trajectory in Fig. 2.
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The continuous vehicle model (23) is discretized using a

matrix exponential approach [22] with a ZOH for the first ten

short time steps and a FOH for the next twenty long time

steps. The resulting discretized vehicle model is

xk+1 =

{

Akxk +Bk
1F

k
yf + Ck k = 0 . . . 9

Akxk +Bk
1F

k
yf +Bk

2F
k+1
yf + Ck k = 10 . . . 29

(27)

where Ak, Bk
1 , Bk

2 , and Ck are time-varying linearizations

along the prediction horizon.

C. Weight Scaling

In addition to discretization choice, optimization weights

should scale according to time step length to remain consistent

along the receding horizon. Consider constant vehicle states

xc for a period of time T evenly divisible by both short and

long time steps. The cost associated with these vehicle states,

as given by an objective function (1), are

J1 =

T/Ts,short
∑

k=1

xTc Q
k
shortxc, J2 =

T/Ts,long
∑

k=1

xTc Q
k
longxc (28)

For these costs to be equivalent, Qk
short must be related to

Qk
long by

Qk
short =

Ts,short
Ts,long

Qk
long (29)

That is, the weights must be scaled along the horizon accord-

ing to the length of the associated time step. Similar logic

can be applied to yield a different scaling for weights that

incorporate time.

Fig. 8 provides a simulation example of planned and closed-

loop control inputs before and after the discretization and

weight scaling modifications. Fig. 8a shows results from the

controller using a ZOH discretization throughout the horizon

and unscaled cost weights. The resulting closed-loop response

matches poorly with the plan. Fig. 8b shows simulation results

using the combined ZOH and FOH discretization and scaled

cost weights. Here the plan matches the closed-loop response.

Fig. 8b demonstrates that, in the absence of disturbances and

plant-model mismatch, using appropriate discretization and

weight scaling significantly reduces the discrepancy between

the plan and closed-loop response.

VII. CONTROLLER FRAMEWORK

The trajectory, stability envelope, and environmental enve-

lope define the control objectives among which the controller

must mediate. An MPC controller determines lateral inputs

that best meet these objectives given a set of longitudinal

commands provided from a simple longitudinal controller. The

overall control structure is pictured in Fig. 9.

A. Longitudinal Controller

The longitudinal controller determines longitudinal forces

along the prediction horizon to track speeds defined by the

speed profile. The controller assumes the vehicle’s longitudinal

dynamics can be represented as a point mass. At each point
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Fig. 8. Simulation results of the MPC plan compared to the closed-loop
response with (a) unscaled weights and ZOH discretization and (b) scaled
weights and combined ZOH and FOH discretization. The plan matches better
in (b) and results in a different closed-loop response from (a).
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Fig. 9. Control structure. The controller calculates longitudinal and then
lateral inputs, which are converted to steering, throttle, and brake commands
for the vehicle.

k in the MPC prediction horizon, the following feedforward

plus feedback control law is used:

F k
x,cmd = max,des(s

k)+kp
(

Ux,des(s
k)− Uk

x

)

+F k
x,drag (30)

where Ux,des(s
k) is the speed determined by the speed profile

at sk, ax,des(s
k) is the necessary longitudinal acceleration to

track the rate of change in the speed profile at sk, kp is a

speed tracking gain, and F k
x,drag offsets dissipative effects such

as rolling resistance and aerodynamic drag. The commanded

forces F k
x,cmd are calculated at each point in the prediction

horizon and integrated to estimate vehicle speed throughout

the horizon. Lookup tables convert F 0
x,cmd to brake pressures

and motor torques that are applied to the vehicle.

B. Lateral Controller

The MPC optimization calculates front tire forces based on

the affine vehicle model (27). Nonzero diagonal entries of Q
corresponding to lateral error e and heading error ∆ψ weights

path tracking. The trust region on rear tire slip angle (18) can

be represented as

Hk
αr
xk ≤ Gk

αr
k = 1 . . . n (31)

Representing the stability constraints (24) and (25) in the

problem as

Hk
vehx

k ≤ Gk
veh k = 1 . . . n (32)
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enforces vehicle stabilization. Encoding the environmental

envelope (26) as

Hk
envx

k ≤ Gk
env k = 1 . . . n (33)

incorporates collision avoidance.

The final optimization problem takes the form

min

n
∑

k=1

xk
T

Qkxk + vk
T

Rkvk + (σk
veh)+W

k
veh + . . .

(σk
env)+W

k
env (34)

subject to the vehicle model (27) and

Hk
αr
xk ≤ Gk

αr
k = 1 . . . n (35)

Hk
vehx

k ≤ Gk
veh + σk

veh k = 1 . . . n (36)

Hk
envx

k ≤ Gk
env + σk

env k = 1 . . . n (37)

|F k
yf | ≤ F k

yf,max k = 0 . . . n (38)

|vk| ≤ vkmax k = 1 . . . n (39)

where σveh and σenv are slack variables on the constraints

enforcing the stability and environmental envelopes, vk =
F k
yf − F k−1

yf , and vmax is a maximum allowable change in

force based on the physical capabilities of the steering system.

This optimization incorporates both collision avoidance and

stabilization, enabling the prioritization of these two some-

times conflicting objectives. Wenv and Wveh weight collision

and stability constraint violations. Ideally, both constraints are

met and slack variables σveh and σenv are zero in the optimal

solution. However, these softened constraints ensure problem

feasibility if constraints must be violated, and their associated

weights provide a means of encoding these priorities. Setting

Wenv ≫Wveh ≫ ||Q||∞ encodes a prioritization of collision

avoidance, then stability, and finally path tracking. This pri-

oritization allows the controller to selectively violate stability

criteria if necessary to avoid a collision. Clear priorities are

achieved by scaling all of the weights by the maximum

expected value of the corresponding variables. Table I outlines

experimental values for normalization and prioritization.

Weighting functions are based on desired behavior of the

associated variables. Quadratic weights on x and v allow

small deviations of these quantities but strongly penalize large

deviations, while linear weights on σveh and σenv immediately

penalize small constraint violations [23]. Such weights encode

the permissibility of small tracking errors while penalizing

even small violations of either envelope. The initial design

introduced in [15] penalized σenv with a quadratic weight but

led to small, avoidable envelope violations in some scenarios.

In addition to the objectives of collision avoidance, sta-

bilization, and path tracking, the optimization also weights

input changes through R and v. Weighting changes in Fyf

promotes earlier and smoother response to constraints later in

the horizon. Further, quickly changing the steering angle to

achieve a desired Fyf can excite unmodeled vehicle dynamics

and introduce steering tracking errors. However, Fyf relates

nonlinearly to steering angle through (19); small changes

in Fyf near the saturated region of the tire curve result in

large steering changes. This nonlinear relationship can be

approximated in the optimization by scaling R by the effective

TABLE I
CONTROLLER PARAMTERS AND WEIGHTS

Description Symbol Value Units

Controller Parameters
Number of time steps n 30 (none)
Controller execution time step Ts,MPC 0.01 s
Short time step size Ts,short 0.01 s
Long time step size Ts,long 0.2 s
Correction time step size Ts,corr [0.01 0.2] s
Rear tire slip regularization rα 0.5 (none)
Rear tire trust region bound ntr 8 (none)
Weight Normalizations
Max expected input change dFyf,max 10 kN/s
Max expected heading error ∆ψmax 0.15 rad
Max expected lateral error emax 3 m
Max expected yaw rate rmax 1 rad/s

Max expected lateral velocity Uy,max 0.15Ukx m/s
Weight Prioritizations
Environment collision slack cost We 500 (none)
Yaw rate stability slack cost Wr 50 (none)
Lateral velocity stability slack cost WUy

50 (none)

Heading error cost Q∆ψ 1 (none)
Lateral error cost Qe 1 (none)
Max change in input cost Rmax 5 (none)
Nominal change in input cost Rbase 0.1 (none)

TABLE II
WEIGHTING FUNCTIONS

Weight = priority × normalization × time step scaling

Rk = min

(

CfRbase

C̄f (F
k
yf,prev

)
, Rmax

)

1
(dFyf,maxTs,long)

2

Ts,long

Tk
s

Qk = diag

(

0, 0, Q∆ψ
1

∆ψ2
max

Tk
s

Ts,long
, 0, Qe

1
e2max

Tk
s

Ts,long

)

Wk
veh =

[

Wr
1

rmax

Tk
s

Ts,long
WUy

1
Uy,max

Tk
s

Ts,long

]

Wk
env =

[

We
1

emax

Tk
s

Ts,long
We

1
emax

Tk
s

Ts,long

]

cornering stiffness, or the slope of the tire curve, around

the operating region defined by the solution to the previous

execution step. The resulting scaling is

Rk = min

(

Cf

C̄f(F ∗k
yf,prev)

Rbase, Rmax

)

(40)

neglecting the normalization and time step scalings.

C̄f(F
∗k
yf,prev) is a local cornering stiffness, or the slope of

a linearization in Fig. 5, based on the previous execution

solution F ∗

yf,prev, Cf is the nominal cornering stiffness, Rbase

is the base R weighting, and Rmax is the maximum allowable

R weighting. The minimization is necessary because the

cornering stiffness at the peak of the tire curve approaches

zero, resulting in an otherwise infinite weight. Table II outlines

the complete weighting functions.

The optimization re-solves each time step, as is standard

with MPC, and F 0
yf converts using (19) to a steering angle

command. The optimization solves in real-time at 100Hz with

code generated from CVXGEN [24].

VIII. EXPERIMENTAL RESULTS

Experiments are conducted with X1, a rear-wheel drive

electric vehicle, shown in Fig. 10. A GNSS-aided Inertial
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Fig. 10. Drive-by-wire test vehicle X1.
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Fig. 11. Environment and vehicle paths for the three test cases. When the
obstacle is present, the vehicle deviates from the desired path to avoid it. In
the known obstacle case, the vehicle enters the turn outside of the desired
path as it prepares to avoid the obstacle.

Navigation System provides real-time measurements of vehi-

cle states. An i7 computer calculates control inputs at 100Hz,

which are executed by the vehicle’s drive-by-wire system.

The vehicle follows the path and speed profile shown

in Fig. 2 under three conditions: no obstacle, a known

obstacle, and an obstacle that appears mid-test. Fig. 11

shows the location of the obstacle, when the obstacle

is detected by the controller, and the resulting vehi-

cle paths for the three cases. Videos of the experimen-

tal setup and MPC plan while driving are available at

https://stanford.box.com/s/vfdzcwot4t6gj6mxb9yej87h6e4xxwcc.

A. No Obstacle

In the first scenario, the vehicle drives around the turn

near its handling limits. Results demonstrate the controller’s

ability to safely and smoothly operate the vehicle near its

limits. The vehicle tracks the nominal path within 40cm

while operating at 90% of its maximum friction capability

of µ ≈ 0.85. Fig. 12 plots the resulting vehicle accelerations,

speed tracking, and lateral error during the maneuver. Vehicle

accelerations remain near the desired accelerations, which are

modified from (8) to incorporate longitudinal weight transfer

according to (16). The vehicle’s acceleration tracks the positive
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Fig. 12. No obstacle test case: (a) acceleration, (b) speed, and (c) lateral error.
Full longitudinal deceleration is not required due to the 18m/s speed limit,
and longitudinal acceleration is limited by the motor. Otherwise accelerations
and speeds track the desired values. Lateral error remains below 40cm.

longitudinal acceleration only up to the acceleration capability

of the motor. The vehicle similarly tracks desired speeds well,

at least within its forward acceleration limits.

Fig. 13 illustrates the steering commands, yaw rate, and

lateral error. The solid dots highlight periods of time where

the vehicle’s yaw rate exceeds the yaw stability bound (25),

and the open circles depict the MPC plan over the prediction

horizon when t = 2s. Of the two vehicle velocity states r
and Uy, only yaw rate r and its associated stability bound

(25) are plotted in Fig. 13 because the Uy stability constraint

(24) is never active. The vehicle’s yaw rate exceeds (25)

twice. Due to model uncertainty, the MPC plan at t = 2s, in

open circles, does not predict exceeding the stability envelope,

but the controller reacts with small countersteers, as seen

by decreasing steering angles associated with each violation,

to bring the state back within the bound. In this example,

the vehicle is never in danger of collision, so the stability

constraints are continuously enforced.

B. Known Obstacle

In this example, the vehicle drives around the same turn,

now with an obstacle present. The obstacle is always present

and becomes incorporated as an environmental constraint

when the ∼4s prediction horizon reaches its location. Similar

to Fig. 13, Fig. 14 plots the resulting steering inputs, yaw

rate, and lateral error during the maneuver. The lateral error

is plotted with discretized environmental bounds at t = 2s,
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Fig. 13. No obstacle test case: (a) steering input, (b) yaw rate, and (c)
lateral error. The controller smoothly drives the vehicle around the corner
and responds to small violations of the stability criteria.

which is similar to Fig. 13c except for the three protruding

points now representing the obstacle.

The long prediction horizon resulting from the variable time

step approach provides ample time for the controller to deviate

from the path, allowing the controller to find a solution at

t = 2s that remains within the stability envelope. Throughout

the maneuver, the controller constantly mediates stabilization

and collision avoidance. Just after t = 3s, for example, the

controller reduces steering to ensure obstacle avoidance. The

following three small countersteers are reactions to predicted

stability violations.

C. Pop-up Obstacle

In this case, an obstacle is detected as the vehicle enters the

turn, emulating a previously obstructed stationary object or an

obstacle that entered the road, such as a deer. This example

highlights the controller’s ability to immediately react and even

violate stability criteria in order to still avoid collision. Fig. 15

plots the resulting steering inputs, yaw rate, and lateral error.

Obstacle detection at t = 1.8s results in the plotted MPC

plan at t = 2s. In this case, the lateral error in Fig. 15c

at t = 2s is near zero, unlike the previous case when the

obstacle is known and the controller is already 1m off the

nominal path. The limited time-to-collision resulting from the

pop-up obstacle necessitates a violation of stability criteria,

allowing greater yaw than normally desired to avoid running

off the road. The steering input around t = 2.5s does not
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(c)

Estimated environment bounds at t = 2s

Fig. 14. Known obstacle test case: (a) steering input, (b) yaw rate, and (c)
lateral error. Because the controller is aware of the obstacle early, the controller
can solve for a collision free path without violating stability criteria.

initially countersteer to correct the yaw bound violation, as in

the previous tests. The vehicle’s actual yaw rate exceeds the

predicted yaw rate during this time, positioning the vehicle to

avoid road departure earlier than planned. At t = 2.75s a path

no longer requiring stability violation is calculated, and the

controller countersteers to eliminate stability violations. Ad-

ditional countersteers through the remainder of the maneuver

minimize stability violations.

The intervening 200ms from obstacle detection at t = 1.8s

to the plan at t = 2s consist of twenty executions of the MPC

controller at 10ms intervals. The controller converges to a new

solution during the first ten execution steps, during which trust

region bounds (18) actively limit allowable changes in rear

slip angle. During convergence, model linearizations remain

accurate and consistent even while the vehicle operates in

this highly nonlinear regime of the tire curve. One significant

benefit of such a control scheme is that the controller is

capable of using these models to choose intelligent steering

inputs from the first time step of obstacle detection onward,

as demonstrated by the decreasing steering angle beginning

immediately after obstacle detection at t = 1.8s.

IX. CONCLUSION

This paper presents a single controller capable of mediating

among the sometimes conflicting objectives of collision avoid-

ance, vehicle stabilization, and path tracking. The controller

immediately reacts to new emergency scenarios and can use all
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Fig. 15. Pop-up obstacle test case: (a) steering input, (b) yaw rate, and (c)
lateral error. The limited distance to the obstacle requires temporary violation
of stability criteria to avoid running off the road.

of the vehicle’s performance capability to avoid an accident.

Prioritizing collision avoidance higher than any other objec-

tive, including stabilization, leads a different paradigm from

existing approaches. Experiments on an autonomous vehicle

demonstrate the performance capability of the controller but

more generally highlight the advantage of this prioritization

approach to collision avoidance and stabilization.
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